A Numerical and Experimental Analysis of the Performance of a Combined Solar Unit for Air Conditioning and Water Desalination

In this paper, a desiccant solar unit for air conditioning and desalination is presented first. Secondly, a dynamic modelling study of the desiccant wheel is developed. After that, a simulation study and an experimental investigation of the behaviour of desiccant wheel are developed. The experimental investigation is done in the chamber of commerce in Freiburg-Germany. Indeed, the variations of calculated and measured temperatures and specific humidity of dehumidified and rejected air are presented where a good agreement is found when comparing the model predictions with experimental data under the considered range of operating conditions. Finally, the study of the compartments of desalination and water condensation shows that the unit can produce an acceptable quantity of water at the same time of the air conditioning operation.

Influence of High Temperature and Humidity on Polymer Composites Used in Relining of Sewage

Some of the main causes for degradation of polymeric materials are thermal aging, hydrolysis, oxidation or chemical degradation by acids, alkalis or water. The first part of this paper provides a brief summary of advances in technology, methods and specification of composite materials for relining as a rehabilitation technique for sewage systems. The second part summarizes an investigation on frequently used composite materials for relining in Sweden, the rubber filled epoxy composite and reinforced polyester composite when they were immersed in deionized water or in dry conditions, and elevated temperatures up to 80°C in the laboratory. The tests were conducted by visual inspection, microscopy, Dynamic Mechanical Analysis (DMA), Differential Scanning Calorimetry (DSC) as well as mechanical testing, three point bending and tensile testing.

Effects of Four Dietary Oils on Cholesterol and Fatty Acid Composition of Egg Yolk in Layers

Dietary cholesterol has elicited the most public interest as it relates with coronary heart disease. Thus, humans have been paying more attention to health, thereby reducing consumption of cholesterol enriched food. Egg is considered as one of the major sources of human dietary cholesterol. However, an alternative way to reduce the potential cholesterolemic effect of eggs is to modify the fatty acid composition of the yolk. The effect of palm oil (PO), soybean oil (SO), sesame seed oil (SSO) and fish oil (FO) supplementation in the diets of layers on egg yolk fatty acid, cholesterol, egg production and egg quality parameters were evaluated in a 42-day feeding trial. One hundred and five Isa Brown laying hens of 34 weeks of age were randomly distributed into seven groups of five replicates and three birds per replicate in a completely randomized design. Seven corn-soybean basal diets (BD) were formulated: BD+No oil (T1), BD+1.5% PO (T2), BD+1.5% SO (T3), BD+1.5% SSO (T4), BD+1.5% FO (T5), BD+0.75% SO+0.75% FO (T6) and BD+0.75% SSO+0.75% FO (T7). Five eggs were randomly sampled at day 42 from each replicate to assay for the cholesterol, fatty acid profile of egg yolk and egg quality assessment. Results showed that there were no significant (P>0.05) differences observed in production performance, egg cholesterol and egg quality parameters except for yolk height, albumen height, yolk index, egg shape index, haugh unit, and yolk colour. There were no significant differences (P>0.05) observed in total cholesterol, high density lipoprotein and low density lipoprotein levels of egg yolk across the treatments. However, diets had effect (P

Supramolecular Cocrystal of 2-Amino-4-Chloro-6- Methylpyrimidine with 4-Methylbenzoic Acid: Synthesis, Structural Determinations and Quantum Chemical Investigations

The 1:1 cocrystal of 2-amino-4-chloro-6- methylpyrimidine (2A4C6MP) with 4-methylbenzoic acid (4MBA) (I) has been prepared by slow evaporation method in methanol, which was crystallized in monoclinic C2/c space group, Z = 8, and a = 28.431 (2) Å, b = 7.3098 (5) Å, c = 14.2622 (10) Å and β = 109.618 (3)°. The presence of unionized –COOH functional group in cocrystal I was identified both by spectral methods (1H and 13C NMR, FTIR) and X-ray diffraction structural analysis. The 2A4C6MP molecule interact with the carboxylic group of the respective 4MBA molecule through N—H⋯O and O—H⋯N hydrogen bonds, forming a cyclic hydrogen–bonded motif R2 2(8). The crystal structure was stabilized by Npyrimidine—H⋯O=C and C=O—H⋯Npyrimidine types hydrogen bonding interactions. Theoretical investigations have been computed by HF and density function (B3LYP) method with 6–311+G (d,p)basis set. The vibrational frequencies together with 1H and 13C NMR chemical shifts have been calculated on the fully optimized geometry of cocrystal I. Theoretical calculations are in good agreement with the experimental results. Solvent–free formation of this cocrystal I is confirmed by powder X-ray diffraction analysis.

A Theoretical Model for a Humidification Dehumidification (HD) Solar Desalination Unit

A theoretical study of a humidification dehumidification solar desalination unit has been carried out to increase understanding the effect of weather conditions on the unit productivity. A humidification-dehumidification (HD) solar desalination unit has been designed to provide fresh water for population in remote arid areas. It consists of solar water collector and air collector; to provide the hot water and air to the desalination chamber. The desalination chamber is divided into humidification and dehumidification towers. The circulation of air between the two towers is maintained by the forced convection. A mathematical model has been formulated, in which the thermodynamic relations were used to study the flow, heat and mass transfer inside the humidifier and dehumidifier. The present technique is performed in order to increase the unit performance. Heat and mass balance has been done and a set of governing equations has been solved using the finite difference technique. The unit productivity has been calculated along the working day during the summer and winter sessions and has compared with the available experimental results. The average accumulative productivity of the system in winter has been ranged between 2.5 to 4 (kg/m2)/day, while the average summer productivity has been found between 8 to 12 (kg/m2)/day.

Spatio-Temporal Data Mining with Association Rules for Lake Van

People, throughout the history, have made estimates and inferences about the future by using their past experiences. Developing information technologies and the improvements in the database management systems make it possible to extract useful information from knowledge in hand for the strategic decisions. Therefore, different methods have been developed. Data mining by association rules learning is one of such methods. Apriori algorithm, one of the well-known association rules learning algorithms, is not commonly used in spatio-temporal data sets. However, it is possible to embed time and space features into the data sets and make Apriori algorithm a suitable data mining technique for learning spatiotemporal association rules. Lake Van, the largest lake of Turkey, is a closed basin. This feature causes the volume of the lake to increase or decrease as a result of change in water amount it holds. In this study, evaporation, humidity, lake altitude, amount of rainfall and temperature parameters recorded in Lake Van region throughout the years are used by the Apriori algorithm and a spatio-temporal data mining application is developed to identify overflows and newlyformed soil regions (underflows) occurring in the coastal parts of Lake Van. Identifying possible reasons of overflows and underflows may be used to alert the experts to take precautions and make the necessary investments.

A Real Time Development Study for Automated Centralized Remote Monitoring System at Royal Belum Forest

Nowadays, illegal logging has been causing many effects including flash flood, avalanche, global warming, and etc. The purpose of this study was to maintain the earth ecosystem by keeping and regulate Malaysia’s treasurable rainforest by utilizing a new technology that will assist in real-time alert and give faster response to the authority to act on these illegal activities. The methodology of this research consisted of design stages that have been conducted as well as the system model and system architecture of the prototype in addition to the proposed hardware and software that have been mainly used such as microcontroller, sensor with the implementation of GSM, and GPS integrated system. This prototype was deployed at Royal Belum forest in December 2014 for phase 1 and April 2015 for phase 2 at 21 pinpoint locations. The findings of this research were the capture of data in real-time such as temperature, humidity, gaseous, fire, and rain detection which indicate the current natural state and habitat in the forest. Besides, this device location can be detected via GPS of its current location and then transmitted by SMS via GSM system. All of its readings were sent in real-time for further analysis. The data that were compared to meteorological department showed that the precision of this device was about 95% and these findings proved that the system is acceptable and suitable to be used in the field.

Effect of Calving Season on the Economic and Production Efficiency of Dairy Production Breeds

The objective of this study was to evaluate the effects of calving season on the production and economic efficiency of dairy farms in Egypt. Our study was performed at dairy production farms in the Alexandria, Behera, and Kafr El-Sheikh provinces of Egypt from summer 2010 to winter 2013. The randomly selected dairy farms had herds consisting of Baladi, Holstein-Friesian, or cross-bred (Baladi × Holstein-Friesian) cows. The data were collected from production records and responses to a structured questionnaire. The average total return differed significantly (P < 0.05) between the different cattle breeds and calving seasons. The average total return was highest for the Holstein- Friesian cows that calved in the winter (29106.42 EGP/cow/year), and it was lowest for Baladi cows that calved in the summer (12489.79 EGP/cow/year). Differences in total returns between the cows that calved in the winter or summer or between the foreign and native breeds, as well as variations in calf prices, might have contributed to the differences in milk yield. The average net profit per cow differed significantly (P < 0.05) between the cattle breeds and calving seasons. The average net profit values for the Baladi cows that calved in the winter or summer were 2413 and 2994.96 EGP/cow/year, respectively, and those for the Holstein- Friesian cows were 10744.17 and 7860.56 EGP/cow/year, respectively, whereas those for the cross-bred cows were 10174.86 and 7571.33 EGP/cow/year, respectively. The variations in net profit might have resulted from variation in the availability or price of feed materials, milk prices, or sales volumes. Our results show that the breed and calving season of dairy cows significantly affected the economic efficiency of dairy farms in Egypt. The cows that calved in the winter produced more milk than those that calved in the summer, which may have been the result of seasonal influences, such as temperature, humidity, management practices, and the type of feed or green fodder available.

Calculation of a Sustainable Quota Harvesting of Long-Tailed Macaque (Macaca fascicularis Raffles) in Their Natural Habitats

The global demand for long-tailed macaques for medical experimentation has continued to increase. Fulfillment of Indonesian export demands has been mostly from natural habitats, based on a harvesting quota. This quota has been determined according to the total catch for a given year, and not based on consideration of any demographic parameters or physical environmental factors with regard to the animal; hence threatening the sustainability of the various populations. It is therefore necessary to formulate a method for calculating a sustainable harvesting quota, based on population parameters in natural habitats. Considering the possibility of variations in habitat characteristics and population parameters, a time series observation of demographic and physical/biotic parameters, in various habitats, was performed on 13 groups of long-tailed macaques, distributed throughout the West Java, Lampung and Yogyakarta areas of Indonesia. These provinces were selected for comparison of the influence of human/tourism activities. Data on population parameters that was collected included data on life expectancy according to age class, numbers of individuals by sex and age class, and ‘ratio of infants to reproductive females’. The estimation of population growth was based on a population dynamic growth model: the Leslie matrix. The harvesting quota was calculated as being the difference between the actual population size and the MVP (minimum viable population) for each sex and age class. Observation indicated that there were variations within group size (24–106 individuals), gender (sex) ratio (1:1 to 1:1.3), life expectancy value (0.30 to 0.93), and ‘ratio of infants to reproductive females’ (0.23 to 1.56). Results of subsequent calculations showed that sustainable harvesting quotas for each studied group of long-tailed macaques, ranged from 29 to 110 individuals. An estimation model of the MVP for each age class was formulated as Log Y = 0.315 + 0.884 Log Ni (number of individual on ith age class). This study also found that life expectancy for the juvenile age class was affected by the humidity under tree stands, and dietary plants’ density at sapling, pole and tree stages (equation: Y=2.296 – 1.535 RH + 0.002 Kpcg – 0.002 Ktg – 0.001 Kphn, R2 = 89.6% with a significance value of 0.001). By contrast, for the sub-adult-adult age class, life expectancy was significantly affected by slope (equation: Y=0.377 = 0.012 Kml, R2 = 50.4%, with significance level of 0.007). The infant-toreproductive- female ratio was affected by humidity under tree stands, and dietary plant density at sapling and pole stages (equation: Y = - 1.432 + 2.172 RH – 0.004 Kpcg + 0.003 Ktg, R2 = 82.0% with significance level of 0.001). This research confirmed the importance of population parameters in determining the minimum viable population, and that MVP varied according to habitat characteristics (especially food availability). It would be difficult therefore, to formulate a general mathematical equation model for determining a harvesting quota for the species as a whole.

Germination and Seed Vigor Response of Five Wheat Cultivars to Stress of Premature Aging Effects

To evaluate the vigor of wheat seeds and stress of premature aging effects on germination percentage, root length and shoot length of five wheat cultivars that include Vynak, Karkheh, Chamran, Star and Kavir which underwent a period of zero, two, three, four days in terms of premature aging with 41°C temperature and 100% relative humidity. Seed germination percentage, root length and shoot length in these conditions were measured. This experiment was conducted as a factorial completely randomized design with four replications in laboratory conditions. The results showed that each of aging treatments used in this experiment can be used to detect differences in vigor of wheat varieties. Wheat cultivars illustrated significant differences in germination percentage, root length and shoot length in terms of premature aging. The wheat cultivars; Astar and Vynak had maximum germination percentage and Karkheh, respectively Kavir and Chamran had lowest percentage of seed germination. Reactions of root and shoot length of wheat cultivars was also different. The results showed that the seeds with a stronger vigor affected less in premature aging condition and the difference between the percentage of seed germination under normal conditions and stress was significant and the seeds with the weaker vigor were more sensitive to the premature aging stress and the premature aging had more severe negative impact on seed vigor.

Development of Sustainable Building Environmental Model (SBEM) in Hong Kong

This study addresses a concept of the Sustainable Building Environmental Model (SBEM) developed to optimize energy consumption in air conditioning and ventilation (ACV) systems without any deterioration of indoor environmental quality (IEQ). The SBEM incorporates two main components: an adaptive comfort temperature control module (ACT) and a new carbon dioxide demand control module (nDCV). These two modules take an innovative approach to maintain satisfaction of the Indoor Environmental Quality (IEQ) with optimum energy consumption; they provide a rational basis of effective control. A total of 2133 sets of measurement data of indoor air temperature (Ta), relative humidity (Rh) and carbon dioxide concentration (CO2) were conducted in some Hong Kong offices to investigate the potential of integrating the SBEM. A simulation was used to evaluate the dynamic performance of the energy and air conditioning system with the integration of the SBEM in an air-conditioned building. It allows us make a clear picture of the control strategies and performed any pre-tuned of controllers before utilized in real systems. With the integration of SBEM, it was able to save up to 12.3% in simulation of overall electricity consumption, and maintain the average carbon dioxide concentration within 1000ppm and occupant dissatisfaction in 20%. 

Temperature Control & Comfort Level of Elementary School Building with Green Roof in New Taipei City, Taiwan

To mitigate the urban heat island effect has become a global issue when we are faced with the challenge of climate change. Through literature review, plant photosynthesis can reduce the carbon dioxide and mitigate the urban heat island effect to a degree. Because there are not enough open space and parks, green roof has become an important policy in Taiwan. We selected elementary school buildings in northern New Taipei City as research subjects since elementary schools are asked with priority to build green roof and important educational place to promote green roof concept. Testo175-H1 recording device was used to record the temperature and humidity differences between roof surface and interior space below roof with and without green roof in the long-term. We also use questionnaires to investigate the awareness of comfort level of green roof and sensation of teachers and students of the elementary schools. The results indicated that the temperature of roof without greening was higher than that with greening by about 2°C. But sometimes during noontime, the temperature of green roof was higher than that of non-green roof probably because of the character of the accumulation and dissipation of heat of greening. The temperature of the interior space below green roof was normally lower than that without green roof by about 1°C, showing that green roof could lower the temperature. The humidity of the green roof was higher than the one without greening also indicated that green roof retained water better. Teachers liked to combine green roof concept in the curriculum, and students wished all classes can take turns to maintain the green roof. Teachers and students whose school had integrated green roof concept in the curriculum were more willing to participate in the maintenance work of green roof. Teachers and students who may have access to and touch the green roof can be more aware of the green roof benefit. We suggest architects to increase the accessibility and visibility of green roof, such as use it as a part of the activity space. This idea can be a reference to the green roof curriculum design.

Crystalline Structure of Starch Based Nano Composites

In contrast with literal meaning of nano, researchers have been achieved mega adventures in this area and every day more nanomaterials are being introduced to the market. After long time application of fossil-based plastics, nowadays accumulation of their waste seems to be a big problem to the environment. On the other hand, mankind has more attention to safety and living environment. Replacing common plastic packaging materials with degradable ones that degrade faster and convert to non-dangerous components like water and carbon dioxide have more attractions; these new materials are based on renewable and inexpensive sources of starch and cellulose. However, the functional properties of them do not suitable for packaging. At this point, nanotechnology has an important role. Utilizing of nanomaterials in polymer structure will improve mechanical and physical properties of them; nanocrystalline cellulose (NCC) has this ability. This work has employed a chemical method to produce NCC and starch bio nanocomposite containing NCC. X-Ray Diffraction technique has characterized the obtained materials. Results showed that applied method is a suitable one as well as applicable one to NCC production.

Preservation of Coconut Toddy Sediments as a Leavening Agent for Bakery Products

Toddy sediment (TS) was cultured in a PDA medium to determine initial yeast load, and also it was undergone sun, shade, solar, dehumidified cold air (DCA) and hot air oven (at 400, 500 and 60oC) drying with a view to preserve viability of yeast. Thereafter, this study was conducted according to two factor factorial design in order to determine best preservation method. Therein the dried TS from the best drying method was taken and divided into two portions. One portion was mixed with 3: 7 ratio of TS: rice flour and the mixture was divided in to two again. While one portion was kept under in house condition the other was in a refrigerator. Same procedure was followed to the rest portion of TS too but it was at the same ratio of corn flour. All treatments were vacuum packed in triple laminate pouches and the best preservation method was determined in terms of leavening index (LI). The TS obtained from the best preservation method was used to make foods (bread and hopper) and organoleptic properties of it were evaluated against same of ordinary foods using sensory panel with a five point hedonic scale. Results revealed that yeast load or fresh TS was 58×106 CFU/g. The best drying method in preserving viability of yeast was DCA because LI of this treatment (96%) is higher than that of other three treatments. Organoleptic properties of foods prepared from best preservation method are as same as ordinary foods according to Duo trio test.

Spatial-Temporal Clustering Characteristics of Dengue in the Northern Region of Sri Lanka, 2010-2013

Dengue outbreaks are affected by biological, ecological, socio-economic and demographic factors that vary over time and space. These factors have been examined separately and still require systematic clarification. The present study aimed to investigate the spatial-temporal clustering relationships between these factors and dengue outbreaks in the northern region of Sri Lanka. Remote sensing (RS) data gathered from a plurality of satellites were used to develop an index comprising rainfall, humidity and temperature data. RS data gathered by ALOS/AVNIR-2 were used to detect urbanization, and a digital land cover map was used to extract land cover information. Other data on relevant factors and dengue outbreaks were collected through institutions and extant databases. The analyzed RS data and databases were integrated into geographic information systems, enabling temporal analysis, spatial statistical analysis and space-time clustering analysis. Our present results showed that increases in the number of the combination of ecological factor and socio-economic and demographic factors with above the average or the presence contribute to significantly high rates of space-time dengue clusters.

Morphological Interaction of Porcine Oocyte and Cumulus Cells Study on in vitro Oocyte Maturation Using Electron Microscopy

Morphological interaction of porcine cumulus-oocyte complexes (pCOCs) was investigated on in vitro condition using electron microscope (SEM and TEM). The totals of 1,923 oocytes were round in shape, surrounded by Zona pellucida with layer of cumulus cells ranging between 59.29-202.14 μm in size. They were classified into intact-, multi-, partial cumulus cell layer oocyte, and completely denuded oocyte, at the percentage composition of 22.80% 32.70%, 18.60%, and 25.90 % respectively. The pCOCs classified as intact- and multi cumulus cell layer oocytes were further culturing at 37°C with 5% CO2, 95% air atmosphere and high humidity for 44 h in M199 with Earle’s salts supplemented with 10% HTFCS, 2.2 mg/mL NaHCO3, 1 M Hepes, 0.25 mM pyruvate, 15 μg/mL porcine follicle-stimulating hormone, 1 μg/mL LH, 1μg/mL estradiol with ethanol, and 50 μg/mL gentamycin sulfate. On electron microscope study, cumulus cells were found to stick their processes to secrete substance from the sac-shape end into Zona pellucida of the oocyte and also communicated with the neighboring cells through their microvilli on the beginning of incubation period. It is believed that the cumulus cells communicate with the oocyte by inserting the microvilli through this gap and embedded in the oocyte cytoplasm before secreting substance, through the sac-shape end of the microvilli, to inhibit primary oocyte development at the prophase I. Morphological changes of the complexes were observed after culturing for 24-44 h. One hundred percentages of the cumulus layers were expanded and cumulus cells were peeling off from the oocyte surface. In addition, the round-shape cumulus cells transformed themselves into either an elongate shape or a columnar shape, and no communication between cumulus neighboring cells. After 44 h of incubation time, diameter of oocytes surrounded by cumulus cells was larger than 0 h incubation. The effect of hormones in culture medium is exerted by their receptors present in porcine oocyte. It is likely that all morphological changes of the complexes after hormone treatment were to allow maturation of the oocyte. This study demonstrated that the association of hormones in M199 could promote porcine follicle activation in 44 h in vitro condition. This culture system should be useful for studying the regulation of early follicular growth and development, especially because these follicles represent a large source of oocytes that could be used in vitro for cell technology.

Reduce, Reuse and Recycle: Grand Challenges in Construction Recovery Process

Hurling a successful Construction and Demolition Waste (C&DW) recycling operation around the globe is a challenge today, predominantly because secondary materials markets are yet to be integrated. Reducing, Reusing and recycling of (C&DW) have been employed over the years, and various techniques have been investigated. However, the economic and environmental viability of its application seems limited. This paper discusses the costs and benefits in using secondary materials and focus on investigating reuse and recycling process for five major types of construction materials: concrete, metal, wood, cardboard/paper and plasterboard. Data obtained from demolition specialists and contractors are considered and evaluated. The research paper found that construction material recovery process fully incorporate a 3R’s principle contributing to saving energy and natural resources. This scrutiny leads to the empathy of grand challenges in construction material recovery process. Recommendations to deepen material recovery process are also discussed.

The Impact of the Cell-Free Solution of Lactic Acid Bacteria on Cadaverine Production by Listeria monocytogenes and Staphylococcus aureus in Lysine-Decarboxylase Broth

The influences of cell-free solutions (CFSs) of lactic acid bacteria (LAB) on cadaverine and other biogenic amines production by Listeria monocytogenes and Staphylococcus aureus were investigated in lysine decarboxylase broth (LDB) using HPLC. Cell free solutions were prepared from Lactococcus lactis subsp. lactis, Leuconostoc mesenteroides subsp. cremoris, Pediococcus acidilactici and Streptococcus thermophiles. Two different concentrations that were 50% and 25% CFS and the control without CFSs were prepared. Significant variations on biogenic amine production were observed in the presence of L. monocytogenes and S. aureus (P < 0.05). The function of CFS on biogenic amine production by foodborne pathogens varied depending on strains and specific amine. Cadaverine formation by L. monocytogenes and S. aureus in control were 500.9 and 948.1 mg/L, respectively while the CFSs of LAB induced 4-fold lower cadaverine production by L. monocytogenes and 7-fold lower cadaverine production by S. aureus. The CFSs resulted in strong decreases in cadaverine and putrescine production by L. monocytogenes and S. aureus, although remarkable increases were observed for histamine, spermidine, spermine, serotonin, dopamine, tyramine and agmatine in the presence of LAB in lysine decarboxylase broth.

Physical and Microbiological Evaluation of Chitosan Films: Effect of Essential Oils and Storage

The effect of the inclusion of thyme and rosemary essential oils into chitosan films, as well as the microbiological and physical properties when storing chitosan film with and without the mentioned inclusion was studied. The film forming solution was prepared by dissolving chitosan (2%, w/v), polysorbate 80 (4% w/w CH) and glycerol (16% w/w CH) in aqueous lactic acid solutions (control). The thyme (TEO) and rosemary (REO) essential oils (EOs) were included 1:1 w/w (EOs:CH) on their combination 50/50 (TEO:REO). The films were stored at temperatures of 5, 20, 33°C and a relative humidity of 75% during four weeks. The films with essential oil inclusion did not show an antimicrobial activity against strains. This behavior could be explained because the chitosan only inhibits the growth of microorganisms in direct contact with the active sites. However, the inhibition capacity of TEO was higher than the REO and a synergic effect between TEO:REO was found for S. enteritidis strains in the chitosan solution. Some physical properties were modified by the inclusion of essential oils. The addition of essential oils does not affect the mechanical properties (tensile strength, elongation at break, puncture deformation), the water solubility, the swelling index nor the DSC behavior. However, the essential oil inclusion can significantly decrease the thickness, the moisture content, and the L* value of films whereas the b* value increased due to molecular interactions between the polymeric matrix, the loosing of the structure, and the chemical modifications. On the other hand, the temperature and time of storage changed some physical properties on the chitosan films. This could have occurred because of chemical changes, such as swelling in the presence of high humidity air and the reacetylation of amino groups. In the majority of cases, properties such as moisture content, tensile strength, elongation at break, puncture deformation, a*, b*, chrome, 7E increased whereas water resistance, swelling index, L*, and hue angle decreased.

Field Study for Evaluating Winter Thermal Performance of Auckland School Buildings

Auckland has a temperate climate with comfortable warm, dry summers and mild, wet winters. An Auckland school normally does not need air conditioning for cooling during the summer and only needs heating during the winter. The Auckland school building thermal design should more focus on winter thermal performance and indoor thermal comfort for energy efficiency. This field study of testing indoor and outdoor air temperatures, relative humidity and indoor surface temperatures of three classrooms with different envelopes were carried out in the Avondale College during the winter months in 2013. According to the field study data, this study is to compare and evaluate winter thermal performance and indoor thermal conditions of school buildings with different envelopes.