Efficient Aggregate Signature Algorithm and Its Application in MANET

An aggregate signature scheme can aggregate n signatures on n distinct messages from n distinct signers into a single signature. Thus, n verification equations can be reduced to one. So the aggregate signature adapts to Mobile Ad hoc Network (MANET). In this paper, we propose an efficient ID-based aggregate signature scheme with constant pairing computations. Compared with the existing ID-based aggregate signature scheme, this scheme greatly improves the efficiency of signature communication and verification. In addition, in this work, we apply our ID-based aggregate sig- nature to authenticated routing protocol to present a secure routing scheme. Our scheme not only provides sound authentication and a secure routing protocol in ad hoc networks, but also meets the nature of MANET.

Secure Protocol for Short Message Service

Short Message Service (SMS) has grown in popularity over the years and it has become a common way of communication, it is a service provided through General System for Mobile Communications (GSM) that allows users to send text messages to others. SMS is usually used to transport unclassified information, but with the rise of mobile commerce it has become a popular tool for transmitting sensitive information between the business and its clients. By default SMS does not guarantee confidentiality and integrity to the message content. In the mobile communication systems, security (encryption) offered by the network operator only applies on the wireless link. Data delivered through the mobile core network may not be protected. Existing end-to-end security mechanisms are provided at application level and typically based on public key cryptosystem. The main concern in a public-key setting is the authenticity of the public key; this issue can be resolved by identity-based (IDbased) cryptography where the public key of a user can be derived from public information that uniquely identifies the user. This paper presents an encryption mechanism based on the IDbased scheme using Elliptic curves to provide end-to-end security for SMS. This mechanism has been implemented over the standard SMS network architecture and the encryption overhead has been estimated and compared with RSA scheme. This study indicates that the ID-based mechanism has advantages over the RSA mechanism in key distribution and scalability of increasing security level for mobile service.