Studies on Automatic Measurement Technology for Surface Braided Angle of Three-Dimensional Braided Composite Material Performs

This paper describes a new measuring algorithm for three-dimensional (3-D) braided composite material .Braided angle is an important parameter of braided composites. The objective of this paper is to present an automatic measuring system. In the paper, the algorithm is performed by using vcµ6.0 language on PC. An advanced filtered algorithm for image of 3-D braided composites material performs has been developed. The procedure is completely automatic and relies on the gray scale information content of the images and their local wavelet transform modulus maxims. Experimental results show that the proposed method is feasible. The algorithm was tested on both carbon-fiber and glass-fiber performs.

Solar Energy Collection using a Double-layer Roof

The purpose of this study is to investigate the efficiency of a double-layer roof in collecting solar energy as an application to the areas such as raising high-end temperature of organic Rankine cycle (ORC). The by-product of the solar roof is to reduce building air-conditioning loads. The experimental apparatus are arranged to evaluate the effects of the solar roof in absorbing solar energy. The flow channel is basically formed by an aluminum plate on top of a plywood plate. The geometric configurations in which the effects of absorbing energy is analyzed include: a bare uncovered aluminum plate, a glass-covered aluminum plate, a glass-covered/black-painted aluminum plate, a plate with variable lengths, a flow channel with stuffed material (in an attempt on enhancement of heat conduction), and a flow channel with variable slanted angles. The experimental results show that the efficiency of energy collection varies from 0.6 % to 11 % for the geometric configurations mentioned above. An additional study is carried out using CFD simulation to investigate the effects of fins on the aluminum plate. It shows that due to vastly enhanced heat conduction, the efficiency can reach ~23 % if 50 fins are installed on the aluminum plate. The study shows that a double-layer roof can efficiently absorb solar energy and substantially reduce building air-conditioning loads. On the high end of an organic Rankine cycle, a solar pond is used to replace the warm surface water of the sea as OTEC (ocean thermal energy conversion) is the driving energy for the ORC. The energy collected from the double-layered solar roof can be pumped into the pond and raise the pond temperature as the pond surface area is equivalently increased by nearly one-fourth of the total area of the double-layer solar roof. The effect of raising solar pond temperature is especially prominent if the double-layer solar roofs are installed in a community area.

Kaolin for Production of Souvenirs

Ranong province has the best kaolin, and it is the most useful of all the clay types used in ceramic making. Until recently, there has been only one community business making ceramics in Ranong province. And this business could not build the mix of body and glaze from their raw material without assistance. Considering these problems, this research is aimed to test the composition of ceramic body and glaze which suit. Kaolin from Ranong is the raw material which these search focuses on. All other raw materials use in the investigation will come from southern Thailand, kaolin and limestone from Ranong province, ball clay from Surat Thani province, white sand from Songkhla province, and feldspar from Nakhon Si Thammarat province. Results can be used to develop the efficiency of industrial production which in return will enhance the business process.

Quantitative Analysis of PCA, ICA, LDA and SVM in Face Recognition

Face recognition is a technique to automatically identify or verify individuals. It receives great attention in identification, authentication, security and many more applications. Diverse methods had been proposed for this purpose and also a lot of comparative studies were performed. However, researchers could not reach unified conclusion. In this paper, we are reporting an extensive quantitative accuracy analysis of four most widely used face recognition algorithms: Principal Component Analysis (PCA), Independent Component Analysis (ICA), Linear Discriminant Analysis (LDA) and Support Vector Machine (SVM) using AT&T, Sheffield and Bangladeshi people face databases under diverse situations such as illumination, alignment and pose variations.

The Study of the Interaction between Catanionic Surface Micelle SDS-CTAB and Insulin at Air/Water Interface

Herein, we report the different types of surface morphology due to the interaction between the pure protein Insulin (INS) and catanionic surfactant mixture of Sodium Dodecyl Sulfate (SDS) and Cetyl Trimethyl Ammonium Bromide (CTAB) at air/water interface obtained by the Langmuir-Blodgett (LB) technique. We characterized the aggregations by Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM) and Fourier transform infrared spectroscopy (FTIR) in LB films. We found that the INS adsorption increased in presence of catanionic surfactant at air/water interface. The presence of small amount of surfactant induces two-stage growth kinetics due to the pure protein absorption and protein-catanionic surface micelle interaction. The protein remains in native state in presence of small amount of surfactant mixture. Smaller amount of surfactant mixture with INS is producing surface micelle type structure. This may be considered for drug delivery system. On the other hand, INS becomes unfolded and fibrillated in presence of higher amount of surfactant mixture. In both the cases, the protein was successfully immobilized on a glass substrate by the LB technique. These results may find applications in the fundamental science of the physical chemistry of surfactant systems, as well as in the preparation of drug-delivery system.

Study on the Effect of Road Infrastructure, Socio-Economic and Demographic Features on Road Crashes in Bangladesh

Road crashes not only claim lives and inflict injuries but also create economic burden to the society due to loss of productivity. The problem of deaths and injuries as a result of road traffic crashes is now acknowledged to be a global phenomenon with authorities in virtually all countries of the world concerned about the growth in the number of people killed and seriously injured on their roads. However, the road crash scenario of a developing country like Bangladesh is much worse comparing with this of developed countries. For developing proper countermeasures it is necessary to identify the factors affecting crash occurrences. The objectives of the study is to examine the effect of district wise road infrastructure, socioeconomic and demographic features on crash occurrence .The unit of analysis will be taken as individual district which has not been explored much in the past. Reported crash data obtained from Bangladesh Road Transport Authority (BRTA) from the year 2004 to 2010 are utilized to develop negative binomial model. The model result will reveal the effect of road length (both paved and unpaved), road infrastructure and several socio economic characteristics on district level crash frequency in Bangladesh.

The Significance of Embodied Energy in Certified Passive Houses

Certifications such as the Passive House Standard aim to reduce the final space heating energy demand of residential buildings. Space conditioning, notably heating, is responsible for nearly 70% of final residential energy consumption in Europe. There is therefore significant scope for the reduction of energy consumption through improvements to the energy efficiency of residential buildings. However, these certifications totally overlook the energy embodied in the building materials used to achieve this greater operational energy efficiency. The large amount of insulation and the triple-glazed high efficiency windows require a significant amount of energy to manufacture. While some previous studies have assessed the life cycle energy demand of passive houses, including their embodied energy, these rely on incomplete assessment techniques which greatly underestimate embodied energy and can lead to misleading conclusions. This paper analyses the embodied and operational energy demands of a case study passive house using a comprehensive hybrid analysis technique to quantify embodied energy. Results show that the embodied energy is much more significant than previously thought. Also, compared to a standard house with the same geometry, structure, finishes and number of people, a passive house can use more energy over 80 years, mainly due to the additional materials required. Current building energy efficiency certifications should widen their system boundaries to include embodied energy in order to reduce the life cycle energy demand of residential buildings.

Evaluation of Guaiacol and Syringol Emission upon Wood Pyrolysis for some Fast Growing Species

Wood pyrolysis for Casuarina glauca, Casuarina cunninghamiana, Eucalyptus camaldulensis, Eucalyptus microtheca was made at 450°C with 2.5°C/min. in a flowing N2-atmosphere. The Eucalyptus genus wood gave higher values of specific gravity, ash , total extractives, lignin, N2-liquid trap distillate (NLTD) and water trap distillate (WSP) than those for Casuarina genus. The GHC of NLTD was higher for Casuarina genus than that for Eucalyptus genus with the highest value for Casuarina cunninghamiana. Guiacol, 4-ethyl-2-methoxyphenol and syringol were observed in the NLTD of all the four wood species reflecting their parent hardwood lignin origin. Eucalyptus camaldulensis wood had the highest lignin content (28.89%) and was pyrolyzed to the highest values of phenolics (73.01%), guaiacol (11.2%) and syringol (32.28%) contents in methylene chloride fraction (MCF) of NLTD. Accordingly, recoveries of syringol and guaiacol may become economically attractive from Eucalyptus camaldulensis.

Mode III Interlaminar Fracture in Woven Glass/Epoxy Composite Laminates

In the present study, fracture behavior of woven fabric-reinforced glass/epoxy composite laminates under mode III crack growth was experimentally investigated and numerically modeled. Two methods were used for the calculation of the strain energy release rate: the experimental compliance calibration (CC) method and the Virtual Crack Closure Technique (VCCT). To achieve this aim ECT (Edge Crack Torsion) was used to evaluate fracture toughness in mode III loading (out of plane-shear) at different crack lengths. Load–displacement and associated energy release rates were obtained for various case of interest. To calculate fracture toughness JIII, two criteria were considered including non-linearity and maximum points in load-displacement curve and it is observed that JIII increases with the crack length increase. Both the experimental compliance method and the virtual crack closure technique proved applicable for the interpretation of the fracture mechanics data of woven glass/epoxy laminates in mode III.

Drilling of Glass Sheets by Abrasive Jet Machining

Drilling of glass sheets with different thicknesses have been carried out by Abrasive Jet Machining process (AJM) in order to determine its machinability under different controlling parameters of the AJM process. The present study has been introduced a mathematical model and the obtained results have been compared with that obtained from other models published earlier [1-6]. The experimental results of the present work are used to discuss the validity of the proposed model as well as the other models.

Fabrication of Autonomous Wheeled Mobile Robot for Industrial Applications Using Appropriate Technology

The autonomous mobile robot was designed and implemented which was capable of navigating in the industrial environments and did a job of picking objects from variable height and delivering it to another location following a predefined trajectory. In developing country like Bangladesh industrial robotics is not very prevalent yet, due to the high installation cost. The objective of this project was to develop an autonomous mobile robot for industrial application using the available resources in the local market at lower manufacturing cost. The mechanical system of the robot was comprised of locomotion, gripping and elevation system. Grippers were designed to grip objects of a predefined shape. Cartesian elevation system was designed for vertical movement of the gripper. PIC18F452 microcontroller was the brain of the control system. The prototype autonomous robot was fabricated for relatively lower load than the industry and the performance was tested in a virtual industrial environment created within the laboratory to realize the effectiveness.

Using Ultrasonic and Infrared Sensors for Distance Measurement

The amplitude response of infrared (IR) sensors depends on the reflectance properties of the target. Therefore, in order to use IR sensor for measuring distances accurately, prior knowledge of the surface must be known. This paper describes the Phong Illumination Model for determining the properties of a surface and subsequently calculating the distance to the surface. The angular position of the IR sensor is computed as normal to the surface for simplifying the calculation. Ultrasonic (US) sensor can provide the initial information on distance to obtain the parameters for this method. In addition, the experimental results obtained by using LabView are discussed. More care should be taken when placing the objects from the sensors during acquiring data since the small change in angle could show very different distance than the actual one. Since stereo camera vision systems do not perform well under some environmental conditions such as plain wall, glass surfaces, or poor lighting conditions, the IR and US sensors can be used additionally to improve the overall vision systems of mobile robots.

An Experimental Study on the Tensile Behavior of the Cracked Aluminum Plates Repaired with FML Composite Patches

Repairing of the cracks by fiber metal laminates (FMLs) was first done by some aeronautical laboratories in early 1970s. In this study, experimental investigations were done on the effect of repairing the center-cracked aluminum plates using the FML patches. The repairing processes were conducted to characterize the response of the repaired structures to tensile tests. The composite patches were made of one aluminum layer and two woven glassepoxy composite layers. Three different crack lengths in three crack angles and different patch lay-ups were examined. It was observed for the lengthen cracks, the effect of increasing the crack angle on ultimate tensile load in the structure was increase. It was indicated that the situation of metal layer in the FML patches had an important effect on the tensile response of the tested specimens. It was found when the aluminum layer is farther, the ultimate tensile load has the highest amount.

Family Communication Patterns between Muslim and Santal Communities in Rural Bangladesh: A Cross-Cultural Perspective

This study compares family communication patterns in association with family socio-cultural status, especially marriage and family pattern, and couples- socio-economic status between Muslim and Santal communities in rural Bangladesh. A total of 288 couples, 145 couples from the Muslim and 143 couples from the Santal were randomly selected through cluster sampling procedure from Kalna village situated in Tanore Upazila of Rajshahi district of Bangladesh, where both the communities dwell as neighbors. In order to collect data from the selected samples, interview method with semistructural questionnaire schedule was applied. The responses given by the respondents were analyzed by Pearson-s chi-squire test and bivariate correlation techniques. The results of Pearson-s chi-squire test revealed that family communication patterns (X2= 25. 90, df= 2, p0.05) were significantly different between the Muslim and Santal communities. In addition, Spearman-s bivariate correlation coefficients suggested that among the exogenous factors, family type (rs=.135, p

Pilot Study on the Impact of VLE on Mathematical Concepts Acquisition within Secondary Education in England

The research investigates the “impact of VLE on mathematical concepts acquisition of the special education needs (SENs) students at KS4 secondary education sector" in England. The overall aim of the study is to establish possible areas of difficulties to approach for above or below knowledge standard requirements for KS4 students in the acquisition and validation of basic mathematical concepts. A teaching period, in which virtual learning environment (Fronter) was used to emphasise different mathematical perception and symbolic representation was carried out and task based survey conducted to 20 special education needs students [14 actually took part]. The result shows that students were able to process information and consider images, objects and numbers within the VLE at early stages of acquisition process. They were also able to carry out perceptual tasks but with limiting process of different quotient, thus they need teacher-s guidance to connect them to symbolic representations and sometimes coach them through. The pilot study further indicates that VLE curriculum approaches for students were minutely aligned with mathematics teaching which does not emphasise the integration of VLE into the existing curriculum and current teaching practice. There was also poor alignment of vision regarding the use of VLE in realisation of the objectives of teaching mathematics by the management. On the part of teacher training, not much was done to develop teacher-s skills in the technical and pedagogical aspects of VLE that is in-use at the school. The classroom observation confirmed teaching practice will find a reliance on VLE as an enhancer of mathematical skills, providing interaction and personalisation of learning to SEN students.

Preparation of Nanostructure ZnO-SnO2 Thin Films for Optoelectronic Properties and Post Annealing Influence

ZnO-SnO2 i.e. Zinc-Tin-Oxide (ZTO) thin films were deposited on glass substrate with varying concentrations (ZnO:SnO2 - 100:0, 90:10, 70:30 and 50:50 wt.%) at room temperature by flash evaporation technique. These deposited ZTO film were annealed at 450 0C in vacuum. These films were characterized to study the effect of annealing on the structural, electrical, and optical properties. Atomic force microscopy (AFM) and Scanning electron microscopy (SEM) images manifest the surface morphology of these ZTO thin films. The apparent growth of surface features revealed the formation of nanostructure ZTO thin films. The small value of surface roughness (root mean square RRMS) ensures the usefulness in optical coatings. The sheet resistance was also found to be decreased for both types of films with increasing concentration of SnO2. The optical transmittance found to be decreased however blue shift has been observed after annealing.

Simulation of the Temperature and Heat Gain by Solar Parabolic Trough Collector in Algeria

The objectif of the present work is to determinate the potential of the solar parabolic trough collector (PTC) for use in the design of a solar thermal power plant in Algeria. The study is based on a mathematical modeling of the PTC. Heat balance has been established respectively on the heat transfer fluid (HTF), the absorber tube and the glass envelop using the principle of energy conservation at each surface of the HCE cross-sectionn. The modified Euler method is used to solve the obtained differential equations. At first the results for typical days of two seasons the thermal behavior of the HTF, the absorber and the envelope are obtained. Then to determine the thermal performances of the heat transfer fluid, different oils are considered and their temperature and heat gain evolutions compared.

Sustainable Solutions for Municipal Solid Waste Management in Thailand

General as well as the MSW management in Thailand is reviewed in this paper. Topics include the MSW generation, sources, composition, and trends. The review, then, moves to sustainable solutions for MSW management, sustainable alternative approaches with an emphasis on an integrated MSW management. Information of waste in Thailand is also given at the beginning of this paper for better understanding of later contents. It is clear that no one single method of MSW disposal can deal with all materials in an environmentally sustainable way. As such, a suitable approach in MSW management should be an integrated approach that could deliver both environmental and economic sustainability. With increasing environmental concerns, the integrated MSW management system has a potential to maximize the useable waste materials as well as produce energy as a by-product. In Thailand, the compositions of waste (86%) are mainly organic waste, paper, plastic, glass, and metal. As a result, the waste in Thailand is suitable for an integrated MSW management. Currently, the Thai national waste management policy starts to encourage the local administrations to gather into clusters to establish central MSW disposal facilities with suitable technologies and reducing the disposal cost based on the amount of MSW generated.

The Catalytic Effects of Potassium Dichromate on the Pyrolysis of Polymeric Mixtures Part II: Hazelnut Shell and Ultra-high Molecular Weight Polyethylene and their Blend Cases

Renewable energy sources have gained ultimate urgency due to the need of the preservation of the environment for a sustainable development. Pyrolysis is an ultimate promising process in the recycling and acquisition of precious chemicals from wastes. Here, the co-pyrolysis of hazelnut shell with ultra-high molecular weight polyethylene was carried out catalytically and noncatalytically at 500 and 650 ºC. Potassium dichromate was added in certain amounts to act as a catalyst. The liquid, solid and gas products quantities were determined by gravimetry. As a main result, remarkable increases in gasification were observed by using this catalyst for pure components and their blends especially at 650 ºC. The increase in gas product quantity was compensated mainly with the decreases in the solid products and additionally in some cases liquid products quantities. These observations may stem from mainly the activation of carbon-carbon bonds rather than carbon-hydrogen bonds via potassium dichromate. Also, the catalytic effect of potassium dichromate on HS: PEO and HS: UHMWPE co-pyrolysis was compared.

Fracture Characterization of Plain Woven Fabric Glass-Epoxy Composites

Delamination between layers in composite materials is a major structural failure. The delamination resistance is quantified by the critical strain energy release rate (SERR). The present investigation deals with the strain energy release rate of two woven fabric composites. Materials used are made of two types of glass fiber (360 gsm and 600 gsm) of plain weave and epoxy as matrix. The fracture behavior is studied using the mode I, double cantilever beam test and the mode II, end notched flexure test, in order to determine the energy required for the initiation and growth of an artificial crack. The delamination energy of these two materials is compared in order to study the effect of weave and reinforcement on mechanical properties. The fracture mechanism is also analyzed by means of scanning electron microscopy (SEM). It is observed that the plain weave fabric composite with lesser strand width has higher inter laminar fracture properties compared to the plain weave fabric composite with more strand width.