Development of Performance Measures for the Implementation of Total Quality Management in Indian Industry

Total Quality Management (TQM) refers to management methods used to enhance quality and productivity in business organizations. Total Quality Management (TQM) has become a frequently used term in discussions concerning quality. Total Quality management has brought rise in demands on the organizations policy and the customers have gained more importance in the organizations focus. TQM is considered as an important management tool, which helps the organizations to satisfy their customers. In present research critical success factors includes management commitment, customer satisfaction, continuous improvement, work culture and environment, supplier quality management, training and development, employee satisfaction and product/process design are studied. A questionnaire is developed to implement these critical success factors in implementation of total quality management in Indian industry. Questionnaires filled by consulting different industrial organizations. Data collected from questionnaires is analyzed by descriptive and importance indexes. 

How Does Improving the Existing DSL Infrastructure Influence the Expansion of Fiber Technology?

Experts, enterprises and operators expect that the bandwidth request will increase up to rates of 100 to 1,000 Mbps within several years. Therefore the most important question is which technology shall satisfy the future consumer broadband demands. Currently the consensus is, that the fiber technology has the best technical characteristics to achieve such the high bandwidth rates. But fiber technology is so far very cost-intensive and resource consuming. To avoid these investments, operators are concentrating to upgrade the existing copper and hybrid fiber coax infrastructures. This work presents a comparison of the copper and fiber technologies including an overview about the current German broadband market. Both technologies are reviewed in the terms of demand, willingness to pay and economic efficiency in connection with the technical characteristics.

Technical Determinants of Success in Quality Management Systems Implementation in the Automotive Industry

The popularity of quality management system models continues to grow despite the transitional crisis in 2008. Their development is associated with demands of the new requirements for entrepreneurs, such as risk analysis projects and more emphasis on supervision of outsourced processes. In parallel, it is appropriate to focus attention on the selection of companies aspiring to a quality management system. This is particularly important in the automotive supplier industry, where requirements transferred to the levels in the supply chain should be clear, transparent and fairly satisfied. The author has carried out a series of researches aimed at finding the factors that allow for the effective implementation of the quality management system in automotive companies. The research was focused on four groups of companies: 1) manufacturing (parts and assemblies for the purpose of sale or for vehicle manufacturers), 2) service (repair and maintenance of the car) 3) services for the transport of goods or people, 4) commercial (auto parts and vehicles). The identified determinants were divided into two types of criteria: internal and external, as well as hard and soft. The article presents the hard – technical factors that an automotive company must meet in order to achieve the goal of the quality management system implementation.

Impact of Electronic Guest Relationship Management (e-GRM) on Brand Loyalty: The Case of Croatian Hotels

Quick adoption of e-business and emerging influence of “Electronic Word of Mouth e-WOM” communication on guests made leading hotel brands successful examples of electronic guest relationship management. Main reasons behind such success are well established procedures in collection, analysis and usage of highly valuable data available on the Internet, generated through some form of e-GRM programme. E-GRM is more than just a technology solution. It’s a system which balance respective guest demands, hotel technological capabilities and organizational culture of employees, discharging the universal approach in guest relations “same for all”. The purpose of this research derives from the necessity of determining the importance of monitoring and applying e-WOM communication as one of the methods used in managing guest relations. This paper analyses and compares different hotelier’s opinions on e-WOM communication.

A Novel Design in the Use of Planar Transformers for LDMOS Based Amplifiers in Bands II, III, DRM+, DVB-T and DAB+

The coaxial transformer-coupled push-pull circuitry has been used widely in HF and VHF amplifiers for many decades without significant changes in the topology of the transformers. Basic changes over the years concerned the construction and turns ratio of the transformers as has been imposed upon the newer technologies active devices demands. The balun transmission line transformers applied in push-pull amplifiers enable input/output impedance transformation, but are mainly used to convert the balanced output into unbalanced and the input unbalanced into balanced. A simple and affordable alternative solution over the traditional coaxial transformer is the coreless planar balun. A key advantage over the traditional approach lies in the high specifications repeatability; simplifying the amplifier construction requirements as the planar balun constitutes an integrated part of the PCB copper layout. This paper presents the performance analysis of a planar LDMOS MRFE6VP5600 Push-Pull amplifier that enables robust operation in Band III, DVB-T, DVB-T2 standards but functions equally well in Band II, for DRM+ new generation transmitters.

Reliability-Based Ductility Seismic Spectra of Structures with Tilting

A reliability-based methodology which uses structural demand hazard curves to consider the increment of the ductility demands of structures with tilting is proposed. The approach considers the effect of two orthogonal components of the ground motions as well as the influence of soil-structure interaction. The approach involves the calculation of ductility demand hazard curves for symmetric systems and, alternatively, for systems with different degrees of asymmetry. To get this objective, demand hazard curves corresponding to different global ductility demands of the systems are calculated. Next, Uniform Exceedance Rate Spectra (UERS) are developed for a specific mean annual rate of exceedance value. Ratios between UERS corresponding to asymmetric and to symmetric systems located in soft soil of the valley of Mexico are obtained. Results indicate that the ductility demands corresponding to tilted structures may be several times higher than those corresponding to symmetric structures, depending on several factors such as tilting angle and vibration period of structure and soil.

Environmental Limits of Using Newly Developed Progressive Polymer Protection and Repair Systems

The paper is focused on the identification of limiting environmental factors of individual industrial floors on which newly developed polymer protection and repair systems with the use of secondary raw materials will be used. These mainly include floors with extreme stresses and special requirements for materials used. In relation to the environment of a particular industrial floor, it is necessary to ensure, for example, chemical stability, resistance to higher temperatures, resistance to higher mechanical stress, etc. for developed materials, which is reflected in the demands for the developed material systems. The paper describes individual environments and, in relation to them, also requirements for individual components of the developed materials and for the developed materials as a whole.

A Superior Delay Estimation Model for VLSI Interconnect in Current Mode Signaling

Today’s VLSI networks demands for high speed. And in this work the compact form mathematical model for current mode signalling in VLSI interconnects is presented.RLC interconnect line is modelled using characteristic impedance of transmission line and inductive effect. The on-chip inductance effect is dominant at lower technology node is emulated into an equivalent resistance. First order transfer function is designed using finite difference equation, Laplace transform and by applying the boundary conditions at the source and load termination. It has been observed that the dominant pole determines system response and delay in the proposed model. The novel proposed current mode model shows superior performance as compared to voltage mode signalling. Analysis shows that current mode signalling in VLSI interconnects provides 2.8 times better delay performance than voltage mode. Secondly the damping factor of a lumped RLC circuit is shown to be a useful figure of merit.

Customers 50+ Behavior in the Financial Market in the Czech Republic

The paper deals with behaviour of the segment 50+ in the financial market in the Czech Republic. This segment could be said as the strong market power and it can be a crucial business potential for financial business units. The main defined objective of this paper is analysis of the customers´ behaviour of the segment 50- 60 years in the financial market in the Czech Republic and proposal making of the suitable marketing approach to satisfy their demands in the area of product, price, distribution and marketing communication policy. This paper is based on data from one part of primary marketing research. Paper determinates the basic problem areas as well as definition of financial services marketing, defining the primary research problem, hypothesis and primary research methodology. Finally suitable marketing approach to selected sub segment at age of 50-60 years is proposed according to marketing research findings.

Estimation of Seismic Deformation Demands of Tall Buildings with Symmetric Setbacks

This study estimates the seismic demands of tall buildings with central symmetric setbacks by using nonlinear time history analysis. Three setback structures, all 60-story high with setback in three levels, are used for evaluation. The effects of irregularities occurred by setback are evaluated by determination of global-drift, story-displacement and story drift. Story-displacement is modified by roof displacement and first story displacement and story drift is modified by global drift. All results are calculated at the center of mass and in x and y direction. Also the absolute values of these quantities are determined. The results show that increasing of vertical irregularities increases the global drift of the structure and enlarges the deformations in the height of the structure. It is also observed that the effects of geometry irregularity in the seismic deformations of setback structures are higher than those of mass irregularity.

Nanostructured Pt/MnO2 Catalysts and Their Performance for Oxygen Reduction Reaction in Air Cathode Microbial Fuel Cell

Microbial fuel cells (MFCs) represent a promising technology for simultaneous bioelectricity generation and wastewater treatment. Catalysts are significant portions of the cost of microbial fuel cell cathodes. Many materials have been tested as aqueous cathodes, but air-cathodes are needed to avoid energy demands for water aeration. The sluggish oxygen reduction reaction (ORR) rate at air cathode necessitates efficient electrocatalyst such as carbon supported platinum catalyst (Pt/C) which is very costly. Manganese oxide (MnO2) was a representative metal oxide which has been studied as a promising alternative electrocatalyst for ORR and has been tested in air-cathode MFCs. However the single MnO2 has poor electric conductivity and low stability. In the present work, the MnO2 catalyst has been modified by doping Pt nanoparticle. The goal of the work was to improve the performance of the MFC with minimum Pt loading. MnO2 and Pt nanoparticles were prepared by hydrothermal and sol gel methods, respectively. Wet impregnation method was used to synthesize Pt/MnO2 catalyst. The catalysts were further used as cathode catalysts in air-cathode cubic MFCs, in which anaerobic sludge was inoculated as biocatalysts and palm oil mill effluent (POME) was used as the substrate in the anode chamber. The asprepared Pt/MnO2 was characterized comprehensively through field emission scanning electron microscope (FESEM), X-Ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and cyclic voltammetry (CV) where its surface morphology, crystallinity, oxidation state and electrochemical activity were examined, respectively. XPS revealed Mn (IV) oxidation state and Pt (0) nanoparticle metal, indicating the presence of MnO2 and Pt. Morphology of Pt/MnO2 observed from FESEM shows that the doping of Pt did not cause change in needle-like shape of MnO2 which provides large contacting surface area. The electrochemical active area of the Pt/MnO2 catalysts has been increased from 276 to 617 m2/g with the increase in Pt loading from 0.2 to 0.8 wt%. The CV results in O2 saturated neutral Na2SO4 solution showed that MnO2 and Pt/MnO2 catalysts could catalyze ORR with different catalytic activities. MFC with Pt/MnO2 (0.4 wt% Pt) as air cathode catalyst generates a maximum power density of 165 mW/m3, which is higher than that of MFC with MnO2 catalyst (95 mW/m3). The open circuit voltage (OCV) of the MFC operated with MnO2 cathode gradually decreased during 14 days of operation, whereas the MFC with Pt/MnO2 cathode remained almost constant throughout the operation suggesting the higher stability of the Pt/MnO2 catalyst. Therefore, Pt/MnO2 with 0.4 wt% Pt successfully demonstrated as an efficient and low cost electrocatalyst for ORR in air cathode MFC with higher electrochemical activity, stability and hence enhanced performance.

Improving Automotive Efficiency through Lean Management Tools: A Case Study

Managing and improving efficiency in the current highly competitive global automotive industry demands that those companies adopt leaner and more flexible systems. During the past 20 years the domestic automotive industry in North America has been focusing on establishing new management strategies in order to meet market demands. The lean management process also known as Toyota Manufacturing Process (TPS) or lean manufacturing encompasses tools and techniques that were established in order to provide the best quality product with the fastest lead time at the lowest cost. The following paper presents a study that focused on improving labor efficiency at one of the Big Three (Ford, GM, Chrysler LLC) domestic automotive facility in North America. The objective of the study was to utilize several lean management tools in order to optimize the efficiency and utilization levels at the “Pre- Marriage” chassis area in a truck manufacturing and assembly facility. Utilizing three different lean tools (i.e. Standardization of work, 7 Wastes, and 5S) this research was able to improve efficiency by 51%, utilization by 246%, and reduce operations by 14%. The return on investment calculated based on the improvements made was 284%.

Negative Pressure Waves in Hydraulic Systems

Negative pressure phenomenon appears in many thermodynamic, geophysical and biophysical processes in the Nature and technological systems. For more than 100 years of the laboratory researches beginning from F. M. Donny’s tests, the great values of negative pressure have been achieved. But this phenomenon has not been practically applied, being only a nice lab toy due to the special demands for the purity and homogeneity of the liquids for its appearance. The possibility of creation of direct wave of negative pressure in real heterogeneous liquid systems was confirmed experimentally under the certain kinetic and hydraulic conditions. The negative pressure can be considered as the factor of both useful and destroying energies. The new approach to generation of the negative pressure waves in impure, unclean fluids has allowed the creation of principally new energy saving technologies and installations to increase the effectiveness and efficiency of different production processes. It was proved that the negative pressure is one of the main factors causing hard troubles in some technological and natural processes. Received results emphasize the necessity to take into account the role of the negative pressure as an energy factor in evaluation of many transient thermohydrodynamic processes in the Nature and production systems.

Impact of Solar Energy Based Power Grid for Future Prospective of Pakistan

Shortfall of electrical energy in Pakistan is a challenge adversely affecting its industrial output and social growth. As elsewhere, Pakistan derives its electrical energy from a number of conventional sources. The exhaustion of petroleum and conventional resources, the rising costs coupled with extremely adverse climatic effects are taking its toll especially on the under-developed countries like Pakistan. As alternate, renewable energy sources like hydropower, solar, wind, even bio-energy and a mix of some or all of them could provide a credible alternative to the conventional energy resources that would not only be cleaner but sustainable as well. As a model, solar energy-based power grid for the near future has been attempted to offset the energy shortfalls as a mix with our existing sustainable natural energy resources. An assessment of solar energy potential for electricity generation is being presented for fulfilling the energy demands with higher level of reliability and sustainability. This model is based on the premise that solar energy potential of Pakistan is not only reliable but also sustainable. This research estimates the present & future approaching renewable energy resource specially the impact of solar energy based power grid for mitigating energy shortage in Pakistan.

Seismic Assessment of Old Existing RC Buildings on Madinah with Masonry Infilled Using Ambient Vibration Measurements

Early pre-code reinforced concrete structures present undetermined resistance to earthquakes. This situation is particularly unacceptable in the case of essential structures, such as healthcare structures and pilgrims' houses. Amongst these, an existing old RC building in Madinah city (KSA) is seismically evaluated with and without infill wall and their dynamic characteristics are compared with measured values in the field using ambient vibration measurements (AVM). After updating the mathematical models for this building with the experimental results, three dimensional pushover analysis (Nonlinear static analysis) was carried out using commercial structural analysis software incorporating inelastic material properties for concrete, infill and steel. The purpose of this analysis is to evaluate the expected performance of structural systems by estimating, strength and deformation demands in design, and comparing these demands to available capacities at the performance levels of interest. The results summarized and discussed.

Deficiency Risk in Islamic and Conventional Banks

In this article, we have elaborated a study over the nature of financial intermediation in Islamic banks by comparison to those of conventional ones. We have found a striking difference between two kinds of intermediation. We tried, from another side, to study the relationship between the capital level and deficiency risk relying on econometric model, and we have obtained a positive and significant relation between the capital and the deficiency risk for the conventional banks. This means that when the capital of these banks increases, the deficiency risk increases as well. In return, since the Islamic banks are constrained to respect the Sharia Committee as well as customers’ demands that may, in certain contracts, choose to invest their capitals in projects they are interested in. These constraints have as effects to reduce the deficiency risk even when the capital increases.

Decision Making about the Environmental Management Implementation – Incentives and Expectations

Environmental management implementation is presently one of the ways of organization success and value improvement. Increasing an organization motivation to environmental measures introduction is caused primarily by the rising pressure of the society that generates various incentives to endeavor for the environmental performance improvement. The aim of the paper is to identify and characterize the key incentives and expectations leading organizations to the environmental management implementation. The author focuses on five businesses of different size and field, operating in the Czech Republic. The qualitative approach and grounded theory procedure are used in research. The results point out that the significant incentives for environmental management implementation represent primarily demands of customers, the opportunity to declare the environmental commitment and image improvement. The researched enterprises less commonly expect the economical contribution, competitive advantage increase or export rate improvement. The results show that marketing contributions are primarily expected from the environmental management implementation.

Advertisement Effectiveness: A Review and Research Agenda

In today’s highly competitive, dynamic and technology driven business circumstances, marketers are under steady pressure to deliver the best. Organizations are continuously improving and upgrading themselves to meet customer expectations and demands. Technology has not only changed the way in which business is done in modern times but has also transformed the way to reach out to target audience. Marketers have identified most recent media options to communicate and convince potential customers. Numerous scholars have studied the research domain of advertising and have tried to recognize different measures of advertisement effectiveness in context of various media. The objective of this paper is to critically review accessible literature on advertisement effectiveness in context of varied advertising media, recognize major gaps in the literature and identify future research prospects on the basis of critical analysis of literature.

Allocation of Mobile Units in an Urban Emergency Service System

In an urban area the location allocation of emergency services mobile units, such as ambulances, police patrol cars must be designed so as to achieve a prompt response to demand locations. In this paper the partition of a given urban network into distinct sub-networks is performed such that the vertices in each component are close and simultaneously the sums of the corresponding population in the sub-networks are almost uniform. The objective here is to position appropriately in each sub-network a mobile emergency unit in order to reduce the response time to the demands. A mathematical model in framework of graph theory is developed. In order to clarify the corresponding method a relevant numerical example is presented on a small network.

Strategic Management of a Geoscience Education and Training Program

The effective development of a geoscience education and training program takes account of the rapidly changing environment in the geoscience market, includes information about resource-rich countries which have international education demands. In this paper, we introduce the geoscience program run by the International School for Geoscience Resources at the Korea Institute of Geoscience and Mineral Resources (IS-Geo of KIGAM), and show its remarkable performance. To further effective geoscience program planning and operation, we present recommendations for strategic management for customer-oriented operation with a more favorable program format and advanced training aids. Above all, the IS-Geo of KIGAM should continue improve through ‘plan-do-see-feedback’ activities based on the recommendations.