Associations among Fetuin A, Cortisol and Thyroid Hormones in Children with Morbid Obesity and Metabolic Syndrome

Obesity is a disease with an ever-increasing prevalence throughout the world. The metabolic network associated with obesity is very complicated. In metabolic syndrome (MetS), it becomes even more difficult to understand. Within this context, hormones, cytokines, and many others participate in this complex matrix. The collaboration among all of these parameters is a matter of great wonder. Cortisol, as a stress hormone, is closely associated with obesity. Thyroid hormones are involved in the regulation of energy as well as glucose metabolism with all of its associates. Fetuin A has been known for years; however, the involvement of this parameter in obesity discussions is rather new. Recently, it has been defined as one of the new generation markers of obesity. In this study, the aim was to introduce complex interactions among all to be able to make clear comparisons, at least for a part of this complicated matter. Morbid obese (MO) children participated in the study. Two groups with 46 MO children and 43 with MetS were constituted. All children included in the study were above 99th age- and sex-adjusted body mass index (BMI) percentiles according to World Health Organization criteria. Forty-three morbid obese children in the second group also had MetS components. Informed consent forms were filled by the parents of the participants. The institutional ethics committee has given approval for the study protocol. Data as well as the findings of the study were evaluated from a statistical point of view. Two groups were matched for their age and gender compositions. Significantly higher body mass index (BMI), waist circumference, thyrotropin, and insulin values were observed in the MetS group. Triiodothyronine concentrations did not differ between the groups. Elevated levels for thyroxin, cortisol, and fetuin-A were detected in the MetS group compared to the first group (p > 0.05). In MO MetS- group, cortisol was correlated with thyroxin and fetuin-A (p < 0.05). In the MO MetS+ group, none of these correlations were present. Instead, a correlation between cortisol and thyrotropin was found (p < 0.05). In conclusion, findings have shown that cortisol was the key player in severely obese children. The association of this hormone with the participants of thyroid hormone metabolism was quite important. The lack of association with fetuin A in the morbid obese MetS+ group has suggested the possible interference of MetS components in the behavior of this new generation obesity marker. The most remarkable finding of the study was the unique correlation between cortisol and thyrotropin in the morbid obese MetS+ group, suggesting that thyrotropin may serve as a target along with cortisol in the morbid obese MetS+ group. This association may deserve specific attention during the development of remedies against MetS in the pediatric population.

Relationship between Hepatokines and Insulin Resistance in Childhood Obesity

Childhood obesity is an important clinical problem, because it may lead to chronic diseases during the adulthood period of the individual. Obesity is a metabolic disease associated with low-grade inflammation. The liver occurs at the center of metabolic pathways. Adropin, fibroblast growth factor-21 (FGF-21) and fetuin A are hepatokines. Due to the immense participation of the liver in glucose metabolism, these liver derived factors may be associated with insulin resistance (IR), which is a phenomenon discussed within the scope of obesity problems. The aim of this study is to determine the concentrations of adropin, FGF-21 and fetuin A in childhood obesity, to point out possible differences between the obesity groups and to investigate possible associations among these three hepatokines in obese and morbid obese children. A total of 132 children were included in the study. Two obese groups were constituted. The groups were matched in terms of mean±SD values of ages. Body mass index values of the obese and morbid obese groups were 25.0±3.5 kg/m2 and 29.8±5.7 kg/m2, respectively. Anthropometric measurements including waist circumference, hip circumference, head circumference, and neck circumference were recorded. Informed consent forms were taken from the parents of the participants and the Ethics Committee of the institution approved the study protocol. Blood samples were obtained after an overnight fasting. Routine biochemical tests including glucose- and lipid-related parameters were performed. Concentrations of the hepatokines (adropin, FGF-21, fetuin A) were determined by enzyme-linked immunosorbent assay. Insulin resistance indices such as homeostasis model assessment for IR (HOMA-IR), alanine transaminase-to aspartate transaminase ratio (ALT/AST), diagnostic obesity notation model assessment laboratory index, diagnostic obesity notation model assessment metabolic syndrome index as well as obesity indices such as diagnostic obesity notation model assessment-II index, and fat mass index were calculated using the previously derived formulas. Statistical evaluation of the study data as well as findings of the study were performed by SPSS for Windows. Statistical difference was accepted significant when p < 0.05. Statistically significant differences were found for insulin, triglyceride, high density lipoprotein cholesterol levels of the groups. A significant increase was observed for FGF-21 concentrations in the morbid obese group. Higher adropin and fetuin A concentrations were observed in the same group in comparison with the values detected in the obese group (p > 0.05). There was no statistically significant difference between the ALT/AST values of the groups. In all of the remaining IR and obesity indices, significantly increased values were calculated for morbid obese children. Significant correlations were detected between HOMA-IR and each of the hepatokines. The highest one was the association with fetuin A (r = 0.373, p = 0.001). In conclusion, increased levels observed in adropin, FGF-21 and fetuin A have shown that these hepatokines possess increasing potential going from the obese to morbid obese state. Out of the correlations found with IR index, the most affected hepatokine was fetuin A, the parameter possibly used as the indicator of the advanced obesity stage.

Machine Learning Methods for Flood Hazard Mapping

This paper proposes a neural network approach for assessing flood hazard mapping. The core of the model is a machine learning component fed by frequency ratios, namely statistical correlations between flood event occurrences and a selected number of topographic properties. The classification capability was compared with the flood hazard mapping River Basin Plans (Piani Assetto Idrogeologico, acronimed as PAI) designed by the Italian Institute for Environmental Research and Defence, ISPRA (Istituto Superiore per la Protezione e la Ricerca Ambientale), encoding four different increasing flood hazard levels. The study area of Piemonte, an Italian region, has been considered without loss of generality. The frequency ratios may be used as a standalone block to model the flood hazard mapping. Nevertheless, the mixture with a neural network improves the classification power of several percentage points, and may be proposed as a basic tool to model the flood hazard map in a wider scope.

Scenario and Decision Analysis for Solar Energy in Egypt by 2035 Using Dynamic Bayesian Network

Bayesian networks are now considered to be a promising tool in the field of energy with different applications. In this study, the aim was to indicate the states of a previous constructed Bayesian network related to the solar energy in Egypt and the factors affecting its market share, depending on the followed data distribution type for each factor, and using either the Z-distribution approach or the Chebyshev’s inequality theorem. Later on, the separate and the conditional probabilities of the states of each factor in the Bayesian network were derived, either from the collected and scrapped historical data or from estimations and past studies. Results showed that we could use the constructed model for scenario and decision analysis concerning forecasting the total percentage of the market share of the solar energy in Egypt by 2035 and using it as a stable renewable source for generating any type of energy needed. Also, it proved that whenever the use of the solar energy increases, the total costs decreases. Furthermore, we have identified different scenarios, such as the best, worst, 50/50, and most likely one, in terms of the expected changes in the percentage of the solar energy market share. The best scenario showed an 85% probability that the market share of the solar energy in Egypt will exceed 10% of the total energy market, while the worst scenario showed only a 24% probability that the market share of the solar energy in Egypt will exceed 10% of the total energy market. Furthermore, we applied policy analysis to check the effect of changing the controllable (decision) variable’s states acting as different scenarios, to show how it would affect the target nodes in the model. Additionally, the best environmental and economical scenarios were developed to show how other factors are expected to be, in order to affect the model positively. Additional evidence and derived probabilities were added for the weather dynamic nodes whose states depend on time, during the process of converting the Bayesian network into a dynamic Bayesian network.

Spexin and Fetuin A in Morbid Obese Children

Spexin, expressed in the central nervous system, has attracted much interest in feeding behavior, obesity, diabetes, energy metabolism and cardiovascular functions. Fetuin A is known as the negative acute phase reactant synthesized in the liver. Eosinophils are early indicators of cardiometabolic complications. Patients with elevated platelet count, associated with hypercoagulable state in the body, are also more liable to cardiovascular diseases (CVDs). In this study, the aim is to examine the profiles of spexin and fetuin A concomitant with the course of variations detected in eosinophil as well as platelet counts in morbid obese children. 34 children with normal-body mass index (N-BMI) and 51 morbid obese (MO) children participated in the study. Written-informed consent forms were obtained prior to the study. Institutional ethics committee approved the study protocol. Age- and sex-adjusted BMI percentile tables prepared by World Health Organization were used to classify healthy and obese children. Mean age ± SEM of the children were 9.3 ± 0.6 years and 10.7 ± 0.5 years in N-BMI and MO groups, respectively. Anthropometric measurements of the children were taken. BMI values were calculated from weight and height values. Blood samples were obtained after an overnight fasting. Routine hematologic and biochemical tests were performed. Within this context, fasting blood glucose (FBG), insulin (INS), triglycerides (TRG), high density lipoprotein-cholesterol (HDL-C) concentrations were measured. Homeostatic model assessment for insulin resistance (HOMA-IR) values were calculated. Spexin and fetuin A levels were determined by enzyme-linked immunosorbent assay. Data were evaluated from the statistical point of view. Statistically significant differences were found between groups in terms of BMI, fat mass index, INS, HOMA-IR and HDL-C. In MO group, all parameters increased as HDL-C decreased. Elevated concentrations in MO group were detected in eosinophils (p < 0.05) and platelets (p > 0.05). Fetuin A levels decreased in MO group (p > 0.05). However, decrease was statistically significant in spexin levels for this group (p < 0.05). In conclusion, these results have suggested that increases in eosinophils and platelets exhibit behavior as cardiovascular risk factors. Decreased fetuin A behaved as a risk factor suitable to increased risk for cardiovascular problems associated with the severity of obesity. Along with increased eosinophils, increased platelets and decreased fetuin A, decreased spexin was the parameter, which reflects best its possible participation in the early development of CVD risk in MO children.

Facility Location Selection using Preference Programming

This paper presents preference programming technique based multiple criteria decision making analysis for selecting a facility location for a new organization or expansion of an existing facility which is of vital importance for a decision support system and strategic planning process. The implementation of decision support systems is considered crucial to sustain competitive advantage and profitability persistence in turbulent environment. As an effective strategic management and decision making is necessary, multiple criteria decision making analysis supports the decision makers to formulate and implement the right strategy. The investment cost associated with acquiring the property and facility construction makes the facility location selection problem a long-term strategic investment decision, which rationalize the best location selection which results in higher economic benefits through increased productivity and optimal distribution network. Selecting the proper facility location from a given set of alternatives is a difficult task, as many potential qualitative and quantitative multiple conflicting criteria are to be considered. This paper solves a facility location selection problem using preference programming, which is an effective multiple criteria decision making analysis tool applied to deal with complex decision problems in the operational research environment. The ranking results of preference programming are compared with WSM, TOPSIS and VIKOR methods.

Fighter Aircraft Selection Using Technique for Order Preference by Similarity to Ideal Solution with Multiple Criteria Decision Making Analysis

This paper presents a multiple criteria decision making analysis technique for selecting fighter aircraft for the national air force. The selection of military aircraft is a process consisting of contradictory goals and objectives. When a modern air force needs to choose fighter aircraft to upgrade existing fleets, a multiple criteria decision making analysis and scenario planning for defense acquisition has been put forward. The selection of fighter aircraft for the air defense force is a strategic decision making process, since the purchase or lease of fighter jets, maintenance and operating costs and having a fleet is the biggest cost for the air force. Multiple criteria decision making analysis methods are effectively applied to facilitate decision making from various available options. The selection criteria were determined using the literature on the problem of fighter aircraft selection. The selection of fighter aircraft to be purchased for the air defense forces is handled using a multiple criteria decision making analysis technique that also determines a suitable methodological approach for the defense procurement and fleet upgrade planning process. The aim of this study is to originate an approach to evaluate fighter aircraft alternatives, Su-35, F-35, and TF-X (MMU), based on technique for order preference by similarity to ideal solution (TOPSIS).

Heavy Deformation and High-Temperature Annealing Microstructure and Texture Studies of TaHfNbZrTi Equiatomic Refractory High Entropy Alloy

The refractory alloys are crucial for high-temperature applications to improve performance and reduce cost. They are used in several applications such as aerospace, outer space, military and defense, nuclear powerplants, automobiles, and industry. The conventional refractory alloys show greater stability at high temperatures and in contrast they have operational limitations due to their low melting temperatures. However, there is a huge requirement to improve the refractory alloys’ operational temperatures and replace the conventional alloys. The newly emerging refractory high entropy alloys (RHEAs) could be alternative materials for conventional refractory alloys and fulfill the demands and requirements of various practical applications in the future. The RHEA TaHfNbZrTi was prepared through an arc melting process. The annealing behavior of severely deformed equiatomic RHEATaHfNbZrTi has been investigated. To obtain deformed condition, the alloy is cold-rolled to 90% thickness reduction and then subjected to an annealing process to observe recrystallization and microstructural evolution in the range of 800 °C to 1400 °C temperatures. The cold-rolled – 90% condition shows the presence of microstructural heterogeneity. The annealing microstructure of 800 °C temperature reveals that partial recrystallization and further annealing treatment carried out annealing treatment in the range of 850 °C to 1400 °C temperatures exhibits completely recrystallized microstructures, followed by coarsening with a degree of annealing temperature. The deformed and annealed conditions featured the development of body-centered cubic (BCC) fiber textures. The experimental investigation of heavy deformation and followed by high-temperature annealing up to 1400 °C temperature will contribute to the understanding of microstructure and texture evolution of emerging RHEAs.

Assessing and Evaluating the Course Outcomes of Control Systems Course Mapping Complex Engineering Problem Solving Issues and Associated Knowledge Profiles with the Program Outcomes

In the current context, the engineering program educators need to think about how to develop the concepts and complex engineering problem-solving skills through various complex engineering activities by the undergraduate engineering students in various engineering courses. But most of them are facing challenges to assess and evaluate these skills of their students. In this study, detailed assessment and evaluation methods for the undergraduate Electrical and Electronic Engineering (EEE) program are stated using the Outcome-Based Education (OBE) approach. For this purpose, a final year course titled control systems has been selected. The assessment and evaluation approach, course contents, course objectives, course outcomes (COs), and their mapping to the program outcomes (POs) with complex engineering problems and activities via the knowledge profiles, performance indicators, rubrics of assessment, CO and PO attainment data, and other statistics, are reported for a student-cohort of control systems course registered by the students of BSc in EEE program in Spring 2021 Semester at the EEE Department of Southeast University (SEU). It is found that the target benchmark was achieved by the students of that course. Several recommendations for the continuous quality improvement (CQI) process are also provided.

Discrete Breeding Swarm for Cost Minimization of Parallel Job Shop Scheduling Problem

Parallel Job Shop Scheduling Problem (JSSP) is a multi-objective and multi constrains NP-optimization problem. Traditional Artificial Intelligence techniques have been widely used; however, they could be trapped into the local minimum without reaching the optimum solution. Thus, we propose a hybrid Artificial Intelligence (AI) model with Discrete Breeding Swarm (DBS) added to traditional AI to avoid this trapping. This model is applied in the cost minimization of the Car Sequencing and Operator Allocation (CSOA) problem. The practical experiment shows that our model outperforms other techniques in cost minimization.

Efficacy of Polyfluoroalkyl Substances Filtration with Low-Cost Organic Fiber Filter

The purpose of this study was to evaluate the efficacy of a low-cost filter regarding per- and polyfluoroalkyl substances (PFAS). PFAS is a commonly used man-made chemical that can be found in a variety of household and industrial products with deleterious effects on humans. The filter consists of a combination of low-cost materials which could be locally procured. Water testing results for 4 different PFAS contaminants indicated that for Perfluorooctane sulfonic acid (PFOS), the Agency for Toxic Substances and Disease Registry (ATSDR) regulation is 7 ppt, the initial concentration was 15 ppt, and the final concentration was 3.9 ppt. For Perfluorononanoic acid (PFNA), the ATSDR regulation is 10.5 ppt, the initial concentration was 15 ppt, and the final concentration was 3.9 ppt. For Perfluorooctanoic acid (PFOA), the ATSDR regulation is 11 ppt, the initial concentration was 15 ppt, and the final concentration was 3.9 ppt. For Perfluorohexane sulfonic acid (PFHxS), the ATSDR regulation is 70 ppt, the initial concentration was 15 ppt, and the final concentration was 3.9 ppt. The results indicated a 74% reduction in PFAS concentration in filtered samples. Statistical data through regression analysis showed 0.9 validity of the sample data. Initial tests show the efficiency of the proposed filter described could be far greater if tested at a greater scale. It is highly recommended further testing to be conducted to validate the data for an innovative solution to a ubiquitous problem.

IntelligentLogger: A Heavy-Duty Vehicles Fleet Management System Based on IoT and Smart Prediction Techniques

Both daily and long-term management of a heavy-duty vehicles and construction machinery fleet is an extremely complicated and hard to solve issue. This is mainly due to the diversity of the fleet vehicles – machinery, which concerns not only the vehicle types, but also their age/efficiency, as well as the fleet volume, which is often of the order of hundreds or even thousands of vehicles/machineries. In the present paper we present “InteligentLogger”, a holistic heavy-duty fleet management system covering a wide range of diverse fleet vehicles. This is based on specifically designed hardware and software for the automated vehicle health status and operational cost monitoring, for smart maintenance. InteligentLogger is characterized by high adaptability that permits to be tailored to practically any heavy-duty vehicle/machinery (of different technologies -modern or legacy- and of dissimilar uses). Contrary to conventional logistic systems, which are characterized by raised operational costs and often errors, InteligentLogger provides a cost-effective and reliable integrated solution for the e-management and e-maintenance of the fleet members. The InteligentLogger system offers the following unique features that guarantee successful heavy-duty vehicles/machineries fleet management: (a) Recording and storage of operating data of motorized construction machinery, in a reliable way and in real time, using specifically designed Internet of Things (IoT) sensor nodes that communicate through the available network infrastructures, e.g., 3G/LTE; (b) Use on any machine, regardless of its age, in a universal way; (c) Flexibility and complete customization both in terms of data collection, integration with 3rd party systems, as well as in terms of processing and drawing conclusions; (d) Validation, error reporting & correction, as well as update of the system’s database; (e) Artificial intelligence (AI) software, for processing information in real time, identifying out-of-normal behavior and generating alerts; (f) A MicroStrategy based enterprise BI, for modeling information and producing reports, dashboards, and alerts focusing on vehicles– machinery optimal usage, as well as maintenance and scraping policies; (g) Modular structure that allows low implementation costs in the basic fully functional version, but offers scalability without requiring a complete system upgrade.

Index t-SNE: Tracking Dynamics of High-Dimensional Datasets with Coherent Embeddings

t-SNE is an embedding method that the data science community has widely used. It helps two main tasks: to display results by coloring items according to the item class or feature value; and for forensic, giving a first overview of the dataset distribution. Two interesting characteristics of t-SNE are the structure preservation property and the answer to the crowding problem, where all neighbors in high dimensional space cannot be represented correctly in low dimensional space. t-SNE preserves the local neighborhood, and similar items are nicely spaced by adjusting to the local density. These two characteristics produce a meaningful representation, where the cluster area is proportional to its size in number, and relationships between clusters are materialized by closeness on the embedding. This algorithm is non-parametric. The transformation from a high to low dimensional space is described but not learned. Two initializations of the algorithm would lead to two different embedding. In a forensic approach, analysts would like to compare two or more datasets using their embedding. A naive approach would be to embed all datasets together. However, this process is costly as the complexity of t-SNE is quadratic, and would be infeasible for too many datasets. Another approach would be to learn a parametric model over an embedding built with a subset of data. While this approach is highly scalable, points could be mapped at the same exact position, making them indistinguishable. This type of model would be unable to adapt to new outliers nor concept drift. This paper presents a methodology to reuse an embedding to create a new one, where cluster positions are preserved. The optimization process minimizes two costs, one relative to the embedding shape and the second relative to the support embedding’ match. The embedding with the support process can be repeated more than once, with the newly obtained embedding. The successive embedding can be used to study the impact of one variable over the dataset distribution or monitor changes over time. This method has the same complexity as t-SNE per embedding, and memory requirements are only doubled. For a dataset of n elements sorted and split into k subsets, the total embedding complexity would be reduced from O(n2) to O(n2/k), and the memory requirement from n2 to 2(n/k)2 which enables computation on recent laptops. The method showed promising results on a real-world dataset, allowing to observe the birth, evolution and death of clusters. The proposed approach facilitates identifying significant trends and changes, which empowers the monitoring high dimensional datasets’ dynamics.

Simulation and Assessment of Carbon Dioxide Separation by Piperazine Blended Solutions Using E-NRTL and Peng-Robinson Models: A Study of Regeneration Heat Duty

High pressure carbon dioxide (CO2) absorption from a specific off-gas in a conventional column has been evaluated for the environmental concerns by the Aspen HYSYS simulator using a wide range of single absorbents and piperazine (PZ) blended solutions to estimate the outlet CO2 concentration, CO2 loading, reboiler power supply and regeneration heat duty to choose the most efficient solution in terms of CO2 removal and required heat duty. The property package, which is compatible with all applied solutions for the simulation in this study, estimates the properties based on electrolyte non-random two-liquid (E-NRTL) model for electrolyte thermodynamics and Peng-Robinson equation of state for vapor phase and liquid hydrocarbon phase properties. The results of the simulation indicate that PZ in addition to the mixture of PZ and monoethanolamine (MEA) demand the highest regeneration heat duty compared with other studied single and blended amine solutions respectively. The blended amine solutions with the lowest PZ concentrations (5wt% and 10wt%) were considered and compared to reduce the cost of process, among which the blended solution of 10wt%PZ+35wt%MDEA (methyldiethanolamine) was found as the most appropriate solution in terms of CO2 content in the outlet gas, rich-CO2 loading and regeneration heat duty.

Catalytic Pyrolysis of Sewage Sludge for Upgrading Bio-Oil Quality Using Sludge-Based Activated Char as an Alternative to HZSM5

Due to the concerns about the depletion of fossil fuel sources and the deteriorating environment, the attempt to investigate the production of renewable energy will play a crucial role as a potential to alleviate the dependency on mineral fuels. One particular area of interest is generation of bio-oil through sewage sludge (SS) pyrolysis. SS can be a potential candidate in contrast to other types of biomasses due to its availability and low cost. However, the presence of high molecular weight hydrocarbons and oxygenated compounds in the SS bio-oil hinders some of its fuel applications. In this context, catalytic pyrolysis is another attainable route to upgrade bio-oil quality. Among different catalysts (i.e., zeolites) studied for SS pyrolysis, activated chars (AC) are eco-friendly alternatives. The beneficial features of AC derived from SS comprise the comparatively large surface area, porosity, enriched surface functional groups and presence of a high amount of metal species that can improve the catalytic activity. Hence, a sludge-based AC catalyst was fabricated in a single-step pyrolysis reaction with NaOH as the activation agent and was compared with HZSM5 zeolite in this study. The thermal decomposition and kinetics were invested via thermogravimetric analysis (TGA) for guidance and control of pyrolysis and catalytic pyrolysis and the design of the pyrolysis setup. The results indicated that the pyrolysis and catalytic pyrolysis contain four obvious stages and the main decomposition reaction occurred in the range of 200-600 °C. Coats-Redfern method was applied in the 2nd and 3rd devolatilization stages to estimate the reaction order and activation energy (E) from the mass loss data. The average activation energy (Em) values for the reaction orders n = 1, 2 and 3 were in the range of 6.67-20.37 kJ/mol for SS; 1.51-6.87 kJ/mol for HZSM5; and 2.29-9.17 kJ/mol for AC, respectively. According to the results, AC and HZSM5 both were able to improve the reaction rate of SS pyrolysis by abridging the Em value. Moreover, to generate and examine the effect of the catalysts on the quality of bio-oil, a fixed-bed pyrolysis system was designed and implemented. The composition analysis of the produced bio-oil was carried out via gas chromatography/mass spectrometry (GC/MS). The selected SS to catalyst ratios were 1:1, 2:1 and 4:1. The optimum ratio in terms of cracking the long-chain hydrocarbons and removing oxygen-containing compounds was 1:1 for both catalysts. The upgraded bio-oils with HZSM5 and AC were in the total range of C4-C17 with around 72% in the range of C4-C9. The bio-oil from pyrolysis of SS contained 49.27% oxygenated compounds while the presence of HZSM5 and AC dropped to 7.3% and 13.02%, respectively. Meanwhile, generation of value-added chemicals such as light aromatic compounds were significantly improved in the catalytic process. Furthermore, the fabricated AC catalyst was characterized by BET, SEM-EDX, FT-IR and TGA techniques. Overall, this research demonstrated that AC is an efficient catalyst in the pyrolysis of SS and can be used as a cost-competitive catalyst in contrast to HZSM5.

Classification of Extreme Ground-Level Ozone Based on Generalized Extreme Value Model for Air Monitoring Station

Higher ground-level ozone (GLO) concentration adversely affects human health, vegetations as well as activities in the ecosystem. In Malaysia, most of the analysis on GLO concentration are carried out using the average value of GLO concentration, which refers to the centre of distribution to make a prediction or estimation. However, analysis which focuses on the higher value or extreme value in GLO concentration is rarely explored. Hence, the objective of this study is to classify the tail behaviour of GLO using generalized extreme value (GEV) distribution estimation the return level using the corresponding modelling (Gumbel, Weibull, and Frechet) of GEV distribution. The results show that Weibull distribution which is also known as short tail distribution and considered as having less extreme behaviour is the best-fitted distribution for four selected air monitoring stations in Peninsular Malaysia, namely Larkin, Pelabuhan Kelang, Shah Alam, and Tanjung Malim; while Gumbel distribution which is considered as a medium tail distribution is the best-fitted distribution for Nilai station. The return level of GLO concentration in Shah Alam station is comparatively higher than other stations. Overall, return levels increase with increasing return periods but the increment depends on the type of the tail of GEV distribution’s tail. We conduct this study by using maximum likelihood estimation (MLE) method to estimate the parameters at four selected stations in Peninsular Malaysia. Next, the validation for the fitted block maxima series to GEV distribution is performed using probability plot, quantile plot and likelihood ratio test. Profile likelihood confidence interval is tested to verify the type of GEV distribution. These results are important as a guide for early notification on future extreme ozone events.

Study of the Thermal Performance of Bio-Sourced Materials Used as Thermal Insulation in Buildings under Humid Tropical Climate

In the fight against climate change, the energy consuming building sector must also be taken into account to solve this problem. In this case thermal insulation of buildings using bio-based materials is an interesting solution. Therefore, the thermal performance of some materials of this type has been studied. The advantages of these natural materials of plant origin are multiple, biodegradable, low economic cost, renewable and readily available. The use of biobased materials is widespread in the building sector in order to replace conventional insulation materials with natural materials. Vegetable fibers are very important because they have good thermal behaviour and good insulating properties. The aim of using bio-sourced materials is in line with the logic of energy control and environmental protection, the approach is to make the inhabitants of the houses comfortable and reduce their energy consumption (energy efficiency). In this research we will present the results of studies carried out on the thermal conductivity of banana leaves, latan leaves, vetivers fibers, palm kernel fibers, sargassum, coconut leaves, sawdust and bulk sugarcane leaves. The study on thermal conductivity was carried out in two ways, on the one hand using the flash method, and on the other hand a so-called hot box experiment was carried out. We will discuss and highlight a number of influential factors such as moisture and air pockets present in the samples on the thermophysical properties of these materials, in particular thermal conductivity. Finally, the result of a thermal performance test of banana leaves on a roof in Haiti will also be presented in this work.

Performance of BLDC Motor under Kalman Filter Sensorless Drive

The performance of a permanent magnet brushless direct current (BLDC) motor controlled by the Kalman filter based position-sensorless drive is studied in terms of its dependence from the system’s parameters variations. The effects of the system’s parameters changes on the dynamic behavior of state variables are verified. Simulated is the closed loop control scheme with Kalman filter in the feedback line. Distinguished are two separate data sampling modes in analyzing feedback output from the BLDC motor: (1) equal angular separation and (2) equal time intervals. In case (1), the data are collected via equal intervals  of rotor’s angular position i, i.e. keeping  = const. In case (2), the data collection time points ti are separated by equal sampling time intervals t = const. Demonstrated are the effects of the parameters changes on the sensorless control flow, in particular, reduction of the instability torque ripples, switching spikes, and torque load balancing. It is specifically shown that an efficient suppression of commutation induced instability torque ripples is an achievable selection of the sampling rate in the Kalman filter settings above a certain critical value. The computational cost of such suppression is shown to be higher for the motors with lower induction values of the windings.

Effective Leadership in the Engineering, Technology, and Construction Industry

This paper explores what effective leadership is being employed in the engineering, technology, and construction (ETC) industry. Organizations need to understand what character traits are being used and what leadership styles work to promote sustainability and improve the triple bottom line. This paper looks at multiple publications on leadership and character traits effective for managers and leaders in the ETC industry. The ETC industry is a trillion-dollar industry, and understanding ways to improve leadership is vital for organizations' successful outcomes. With improvements to the managerial and leadership, there could be ways for organizations to profit more and cut down on cost costs. Finding ways to improve motivation can help organizations improve safety, improve culture, and increase employee motivation. From the research, this paper has found that situational leadership, transformational, and transactional are the most effective leadership styles that individuals can use in the ETC industry for leadership. Character traits that are the most effective have been identified in this research paper. This research has contributed to the ways individuals who start in the engineering and technology industry can improve upon their leadership skills as they are promoted into managerial and leadership roles. The need for managerial positions in the ETC industry, such as project and construction managers, to improve is vital for successful outcomes and creating a high-level performance. The study helps provide a gap in the limited research available to improve ETC leadership for all organizations' present and future.

Early Depression Detection for Young Adults with a Psychiatric and AI Interdisciplinary Multimodal Framework

During COVID-19, the depression rate has increased dramatically. Young adults are most vulnerable to the mental health effects of the pandemic. Lower-income families have a higher ratio to be diagnosed with depression than the general population, but less access to clinics. This research aims to achieve early depression detection at low cost, large scale, and high accuracy with an interdisciplinary approach by incorporating clinical practices defined by American Psychiatric Association (APA) as well as multimodal AI framework. The proposed approach detected the nine depression symptoms with Natural Language Processing sentiment analysis and a symptom-based Lexicon uniquely designed for young adults. The experiments were conducted on the multimedia survey results from adolescents and young adults and unbiased Twitter communications. The result was further aggregated with the facial emotional cues analyzed by the Convolutional Neural Network on the multimedia survey videos. Five experiments each conducted on 10k data entries reached consistent results with an average accuracy of 88.31%, higher than the existing natural language analysis models. This approach can reach 300+ million daily active Twitter users and is highly accessible by low-income populations to promote early depression detection to raise awareness in adolescents and young adults and reveal complementary cues to assist clinical depression diagnosis.