A Two Level Load Balancing Approach for Cloud Environment

Cloud computing is the outcome of rapid growth of internet. Due to elastic nature of cloud computing and unpredictable behavior of user, load balancing is the major issue in cloud computing paradigm. An efficient load balancing technique can improve the performance in terms of efficient resource utilization and higher customer satisfaction. Load balancing can be implemented through task scheduling, resource allocation and task migration. Various parameters to analyze the performance of load balancing approach are response time, cost, data processing time and throughput. This paper demonstrates a two level load balancer approach by combining join idle queue and join shortest queue approach. Authors have used cloud analyst simulator to test proposed two level load balancer approach. The results are analyzed and compared with the existing algorithms and as observed, proposed work is one step ahead of existing techniques.

Optimizing Hadoop Block Placement Policy and Cluster Blocks Distribution

The current Hadoop block placement policy do not fairly and evenly distributes replicas of blocks written to datanodes in a Hadoop cluster. This paper presents a new solution that helps to keep the cluster in a balanced state while an HDFS client is writing data to a file in Hadoop cluster. The solution had been implemented, and test had been conducted to evaluate its contribution to Hadoop distributed file system. It has been found that, the solution has lowered global execution time taken by Hadoop balancer to 22 percent. It also has been found that, Hadoop balancer respectively over replicate 1.75 and 3.3 percent of all re-distributed blocks in the modified and original Hadoop clusters. The feature that keeps the cluster in a balanced state works as a core part to Hadoop system and not just as a utility like traditional balancer. This is one of the significant achievements and uniqueness of the solution developed during the course of this research work.

A Class of Recurrent Sequences Exhibiting Some Exciting Properties of Balancing Numbers

The balancing numbers are natural numbers n satisfying the Diophantine equation 1 + 2 + 3 + · · · + (n - 1) = (n + 1) + (n + 2) + · · · + (n + r); r is the balancer corresponding to the balancing number n.The nth balancing number is denoted by Bn and the sequence {Bn}1 n=1 satisfies the recurrence relation Bn+1 = 6Bn-Bn-1. The balancing numbers posses some curious properties, some like Fibonacci numbers and some others are more interesting. This paper is a study of recurrent sequence {xn}1 n=1 satisfying the recurrence relation xn+1 = Axn - Bxn-1 and possessing some curious properties like the balancing numbers.