Encapsulation of Satureja khuzestanica Essential Oil in Chitosan Nanoparticles with Enhanced Antifungal Activity

During the recent years the six-fold growth of cancer in Iran has led the production of healthy products to become a challenge in the food industry. Due to the young population in the country, the consumption of fast foods is growing. The chemical cancer-causing preservatives are used to produce these products more than the standard; so using an appropriate alternative seems to be important. On the one hand, the plant essential oils show the high antimicrobial potential against pathogenic and spoilage microorganisms and on the other hand they are highly volatile and decomposed under the processing conditions. The study aims to produce the loaded chitosan nanoparticles with different concentrations of savory essential oil to improve the anti-microbial property and increase the resistance of essential oil to oxygen and heat. The encapsulation efficiency was obtained in the range of 32.07% to 39.93% and the particle size distribution of the samples was observed in the range of 159 to 210 nm. The range of Zeta potential was obtained between -11.9 to -23.1 mV. The essential oil loaded in chitosan showed stronger antifungal activity against Rhizopus stolonifer. The results showed that the antioxidant property is directly related to the concentration of loaded essential oil so that the antioxidant property increases by increasing the concentration of essential oil. In general, it seems that the savory essential oil loaded in chitosan particles can be used as a food processor.

Phenolic Compounds and Antimicrobial Properties of Pomegranate (Punica granatum) Peel Extracts

In recent years, tendency to use of natural antimicrobial agents in food industry has increased. Pomegranate peels containing phenolic compounds and anti-microbial agents, are counted as valuable source for extraction of these compounds. In this study, the extraction of pomegranate peel extract was carried out at different ethanol/water ratios (40:60, 60:40, and 80:20), temperatures (25, 40, and 55 ˚C), and time durations (20, 24, and 28 h). The extraction yield, phenolic compounds, flavonoids, and anthocyanins were measured. ‎Antimicrobial activity of pomegranate peel extracts were determined against some food-borne ‎microorganisms such as Salmonella enteritidis, Escherichia coli, Listeria monocytogenes, ‎‎Staphylococcus aureus, Aspergillus niger, and Saccharomyces cerevisiae by agar diffusion and MIC methods. Results showed that at ethanol/water ratio 60:40, 25 ˚C and 24 h maximum amount of phenolic compounds ‎‏(‎‏‎349.518‎‏ ‏mg gallic acid‏/‏g dried extract), ‎flavonoids (250.124 mg rutin‏/‏g dried extract), anthocyanins (252.047 ‎‏‏mg ‎cyanidin‏‎3‎‏glucoside‏/‏‎100 g dried extract), and the strongest antimicrobial activity were obtained. ‎All extracts’ antimicrobial activities were demonstrated against every tested ‎‎microorganisms‏.‎‏ Staphylococcus aureus showed the highest sensitivity among the tested ‎‎‎microorganisms.

The Antimicrobial Activity of the Essential Oil of Salvia officinalis Harvested in Boumerdes

The Algeria by its location offers a rich and diverse vegetation. A large number of aromatic and medicinal plants grow spontaneously. The interest in these plants has continued to grow in recent years. Their particular properties due to the essential oil fraction can be utilized to treat microbial infections. To this end, and in the context of the valuation of the Algerian flora, we became interested in the species of the family Lamiaceae which is one of the most used as a global source of spices. The plant on which we have based our choice is a species of sage "Salvia officinalis" from the Isser localized region within the province of Boumerdes. This work focuses on the study of the antimicrobial activity of essential oil extracted from the leaves of Salvia officinalis. The extraction is carried out by essential oil hydrodistillation and reveals a yield of 1.06℅. The study of the antimicrobial activity of the essential oil by the method of at aromatogramme shown that Gram positive bacteria are most susceptible (Staphylococcus aureus and Bacillus subtilis) with a strong inhibition of growth. The yeast Candida albicans fungus Aspergillus niger and have shown moderately sensitive.

Screening and Evaluation of in vivo and in vitro Generated Insulin Plant (Vernonia divergens) for Antimicrobial and Anticancer Activities

Vernonia divergens Benth., commonly known as “Insulin Plant” (Fam: Asteraceae) is a potent sugar killer. Locally the leaves of the plant, boiled in water are successfully administered to a large number of diabetic patients. The present study evaluates the putative anti-diabetic ingredients, isolated from the in vivo and in vitro grown plantlets of V. divergens for their antimicrobial and anticancer activities. Sterilized explants of nodal segments were cultured on MS (Musashige and Skoog, 1962) medium in presence of different combinations of hormones. Multiple shoots along with bunch of roots were regenerated at 1mg l-1 BAP and 0.5 mg l-1 NAA. Micro-plantlets were separated and sub-cultured on the double strength (2X) of the above combination of hormones leading to increased length of roots and shoots. These plantlets were successfully transferred to soil and survived well in nature. The ethanol extract of plantlets from both in vivo & in vitro sources were prepared in soxhlet extractor and then concentrated to dryness under reduced pressure in rotary evaporator. Thus obtainedconcentrated extracts showed significant inhibitory activity against gram negative bacteria like Escherichia coli and Pseudomonas aeruginosa but no inhibition was found against gram positive bacteria. Further, these ethanol extracts were screened for in vitro percentage cytotoxicity at different time periods (24 h, 48 h and 72 h) of different dilutions. The in vivo plant extract inhibited the growth of EAC mouse cell lines in the range of 65, 66, 78, and 88% at 100, 50, 25 & 12.5μg mL-1 but at 72 h of treatment. In case of the extract of in vitro origin, the inhibition was found against EAC cell lines even at 48h. During spectrophotometric scanning, the extracts exhibited different maxima (ʎ) - four peaks in in vitro extracts as against single in in vivo preparation suggesting the possible change in the nature of ingredients during micropropagation through tissue culture techniques.

Novel Inhibitor of E. coli DNA Adenine Methyltransferase (Ecodam)

EcoDam is an adenine-N6 DNA methyltransferase that methylates the GATC sites in the Escherichia coli genome. DNA-adenine methylation is not present in higher eukaryotes including humans. These observations raise the possibility that dam inhibitors may be used as anti-microbial agents. Polyphosphate (Poly(P)) is an important metabolite and signaling molecule in prokaryotes and eukaryotes. Here, by using gel retardation experiments to investigate the competition of DNA binding by EcoDam in the presence of polyphosphate, we found that Poly (P) strongly interferes with DNA binding by EcoDam, while same concentration of monophosphate does not. In addition, we demonstrated that Poly (P) binding inhibits the activity of EcoDam and our results suggest that Poly (P) led to strong inhibition of the EcoDam catalytic activity, while monophosphate had only moderate effect.

Anti-microbial Activity of Aristolochic Acid from Root of Aristolochia bracteata Retz

The present research was designed to investigate the anti-microbial activity of aristolochic acid from the root of Aristolochia bracteata. From the methanolic & ethyl extract extracts of Aristolochia bracteata aristolochic acid I was isolated and conformed through IR, NMR & MS. The percentage purity of aristolochic acid I was determined by UV & HPLC method. Antibacterial activity of extracts of Aristolochia bracteata and the isolated compound was determined by disc diffusion method. The results reveled that the isolated aristolochic acid from methanolic extract was more pure than the compound from ethyl acetate extract. The various extracts (500μg/disc) of Aristolochia bracteata showed moderate antibacterial activity with the average zone of inhibition of 7-18 mm by disc diffusion method. Among the extracts, ethyl acetate & methanol extracts were shown good anti-microbial activity and the growth of E.coli (18 mm) was strongly inhibited. Microbial assay of isolated compound (Aristolochic acid I) from ethyl acetate & methanol extracts were shown good antimicrobial activity and the zone of inhibition of both at higher concentration 50 μg/ml was similar with the standard aristolochic acid. It may be concluded that the isolated compound of aristolochic acid I has good anti-bacterial activity.