Self-Tuning Fuzzy Control of Seat Vibrations of Active Quarter Car Model

An active quarter car model with three degrees of freedom is presented for vibration reduction of passenger seat. The designed Fuzzy Logic Controller (FLC) and Self-Tuning Fuzzy Logic Controller (STFLC) are applied in seat suspension. Vibration control performance of active and passive quarter car systems are determined using simulation work. Simulation results in terms of passenger seat acceleration and displacement responses are compared for controlled and uncontrolled cases. Simulation results showed the improved results of both FLC and STFLC controllers in improving passenger ride comfort compared to uncontrolled case. Furthermore, the best performance in simulation studies is achieved by STFLC controlled suspension system compared to FLC controlled and uncontrolled cases.

Comparative Study of Experimental and Theoretical Convective, Evaporative for Two Model Distiller

The purification of brackish seawater becomes a necessity and not a choice against demographic and industrial growth especially in third world countries. Two models can be used in this work: simple solar still and simple solar still coupled with a heat pump. In this research, the productivity of water by Simple Solar Distiller (SSD) and Simple Solar Distiller Hybrid Heat Pump (SSDHP) was determined by the orientation, the use of heat pump, the simple or double glass cover. The productivity can exceed 1.2 L/m²h for the SSDHP and 0.5 L/m²h for SSD model. The result of the global efficiency is determined for two models SSD and SSDHP give respectively 30%, 50%. The internal efficiency attained 35% for SSD and 60% of the SSDHP models. Convective heat coefficient can be determined by attained 2.5 W/m²°C and 0.5 W/m²°C respectively for SSDHP and SSD models.

Structure and Properties of Meltblown Polyetherimide as High Temperature Filter Media

Polyetherimide (PEI), an engineering plastic with very high glass transition temperature and excellent chemical and thermal stability, has been processed into a controlled porosity filter media of varying pore size, performance, and surface characteristics. A special grade of the PEI was processed by melt blowing to produce microfiber nonwovens suitable as filter media. The resulting microfiber webs were characterized to evaluate their structure and properties. The fiber webs were further modified by hot pressing, a post processing technique, which reduces the pore size in order to improve the barrier properties of the resulting membranes. This ongoing research has shown that PEI can be a good candidate for filter media requiring high temperature and chemical resistance with good mechanical properties. Also, by selecting the appropriate processing conditions, it is possible to achieve desired filtration performance from this engineering plastic.

Family Functionality in Mexican Children with Congenital and Non-Congenital Deafness

A total of 100 primary caregivers (mothers, fathers, grandparents) with at least one child or grandchild with a diagnosis of congenital bilateral profound deafness were assessed in order to evaluate the functionality of families with a deaf member, who was evaluated by specialists in audiology, molecular biology, genetics and psychology. After confirmation of the clinical diagnosis, DNA from the patients and parents were analyzed in search of the 35delG deletion of the GJB2 gene to determine who possessed the mutation. All primary caregivers were provided psychological support, regardless of whether or not they had the mutation, and prior and subsequent, the family APGAR test was applied. All parents, grandparents were informed of the results of the genetic analysis during the psychological intervention. The family APGAR, after psychological and genetic counseling, showed that 14% perceived their families as functional, 62% moderately functional and 24% dysfunctional. This shows the importance of psychological support in family functionality that has a direct impact on the quality of life of these families.

Analyzing Culture as an Obstacle to Gender Equality in a Non-Western Context: Key Areas of Conflict between International Women’s Rights and Cultural Rights in South Sudan

International human rights treaties ensure basic rights to all people, regardless of nationality. These treaties have developed in a predominantly Western environment, and their implementation into non-western contexts often raises questions of the transfer-ability of value systems and governance structures. International human rights treaties also postulate the right to the full enjoyment and expression of one’s own culture, known as cultural rights. Many cultural practices and traditions in South Sudan serve as an obstacle to the adaptation of human rights and internationally agreed-upon standards, specifically those pertaining to women’s rights and gender equality. This paper analyzes the specific social, political, and economic conflicts between women’s rights and cultural rights within the context of South Sudan’s evolution into a sovereign nation. It comprehensively evaluates the legal status of South Sudanese women and –based on the empirical evidence- assesses gender equality in four key areas: Marriage, Education, Violence against Women, and Inheritance. This work includes an exploration into how South Sudanese culture influences, and indeed is intertwined with, social, political, and economic spheres, and how it limits gender equality and impedes the full implementation of international human rights treaties. Furthermore, any negative effects which systemic gender inequality and cultural practices that are oppressive to women have on South Sudan as a developing nation are explored. Finally, those areas of conflict between South Sudanese cultural rights and international women’s rights are outlined which can be mitigated or resolved in favor of elevating gender equality without imperializing or destroying South Sudanese culture.

Load Forecasting in Microgrid Systems with R and Cortana Intelligence Suite

Energy production optimization has been traditionally very important for utilities in order to improve resource consumption. However, load forecasting is a challenging task, as there are a large number of relevant variables that must be considered, and several strategies have been used to deal with this complex problem. This is especially true also in microgrids where many elements have to adjust their performance depending on the future generation and consumption conditions. The goal of this paper is to present a solution for short-term load forecasting in microgrids, based on three machine learning experiments developed in R and web services built and deployed with different components of Cortana Intelligence Suite: Azure Machine Learning, a fully managed cloud service that enables to easily build, deploy, and share predictive analytics solutions; SQL database, a Microsoft database service for app developers; and PowerBI, a suite of business analytics tools to analyze data and share insights. Our results show that Boosted Decision Tree and Fast Forest Quantile regression methods can be very useful to predict hourly short-term consumption in microgrids; moreover, we found that for these types of forecasting models, weather data (temperature, wind, humidity and dew point) can play a crucial role in improving the accuracy of the forecasting solution. Data cleaning and feature engineering methods performed in R and different types of machine learning algorithms (Boosted Decision Tree, Fast Forest Quantile and ARIMA) will be presented, and results and performance metrics discussed.

Erythema Multiforme Exudativum Major Caused by Isoniazid Hypersensitivity in a Child

Erythema Multiforme Exudativum Major (EMEM) is one of the drug allergy diseases. Drug allergies caused by isoniazid rarely causes EMEM. Cutaneous reactions caused by isoniazid were obtained in 0.98% of patients, but the precise occurrence of Steven Johnson’s Syndrome (SJS) and Toxic Epidermolisis Necrolisis (TEN) due to isoniazid is not known for certain. We present this case to show hypersensitivity of isoniazid in a child. Based on the history of drug intake, physical diagnostic tests, drug elimination and provocation; we established the diagnosis of isoniazid hypersensitivity. The child showed improvement on skin manifestation after stopped isoniazid therapy.

Hydrological Modelling of Geological Behaviours in Environmental Planning for Urban Areas

Runoff,decreasing water levels and recharge in urban areas have been a complex issue now a days pointing defective urban design and increasing demography as cause. Very less has been discussed or analysed for water sensitive Urban Master Plans or local area plans. Land use planning deals with land transformation from natural areas into developed ones, which lead to changes in natural environment. Elaborated knowledge of relationship between the existing patterns of land use-land cover and recharge with respect to prevailing soil below is less as compared to speed of development. The parameters of incompatibility between urban functions and the functions of the natural environment are becoming various. Changes in land patterns due to built up, pavements, roads and similar land cover affects surface water flow seriously. It also changes permeability and absorption characteristics of the soil. Urban planners need to know natural processes along with modern means and best technologies available,as there is a huge gap between basic knowledge of natural processes and its requirement for balanced development planning leading to minimum impact on water recharge. The present paper analyzes the variations in land use land cover and their impacts on surface flows and sub-surface recharge in study area. The methodology adopted was to analyse the changes in land use and land cover using GIS and Civil 3d auto cad. The variations were used in  computer modeling using Storm-water Management Model to find out the runoff for various soil groups and resulting recharge observing water levels in POW data for last 40 years of the study area. Results were anlayzed again to find best correlations for sustainable recharge in urban areas.

Human Rights in Armed Conflicts and Constitutional Law

The main purpose of this paper is to determine the impact of both International Humanitarian Law and anti-piracy International Law on Constitutional Law. International Law is endowed with a rich set of norms on the protection of private individuals in armed conflicts and copes with the diachronic crime of maritime piracy, which may be considered as a private war in the high seas. Constitutional Law has been traditionally geared at two generations of fundamental rights. The paper will aim at answering the question “Which is the profile of 3G constitutional rights, particularly in the light of International Humanitarian Law?”

Optimizing Approach for Sifting Process to Solve a Common Type of Empirical Mode Decomposition Mode Mixing

Empirical mode decomposition (EMD), a new data-driven of time-series decomposition, has the advantage of supposing that a time series is non-linear or non-stationary, as is implicitly achieved in Fourier decomposition. However, the EMD suffers of mode mixing problem in some cases. The aim of this paper is to present a solution for a common type of signals causing of EMD mode mixing problem, in case a signal suffers of an intermittency. By an artificial example, the solution shows superior performance in terms of cope EMD mode mixing problem comparing with the conventional EMD and Ensemble Empirical Mode decomposition (EEMD). Furthermore, the over-sifting problem is also completely avoided; and computation load is reduced roughly six times compared with EEMD, an ensemble number of 50.

Investigation of Heat Affected Zone of Steel P92 Using the Thermal Cycle Simulator

This work is focused on mechanical properties and microstructure of heat affected zone (HAZ) of steel P92. The thermal cycle simulator was used for modeling a fine grained zone of HAZ. Hardness and impact toughness were measured on simulated samples. Microstructural analysis using optical microscopy was performed on selected samples. Achieved results were compared with the values of a real welded joint. The thermal cycle simulator allows transferring the properties of very small HAZ to the sufficiently large sample where the tests of the mechanical properties can be performed. A satisfactory accordance was found when comparing the microstructure and mechanical properties of real welds and simulated samples.

Heavy Metals in PM2.5 Aerosols in Urban Sites of Győr, Hungary

Atmospheric concentrations of some heavy metal compounds (Pb, Cd, Ni) and the metalloid As were identified and determined in airborne PM2.5 particles in urban sites of Győr, northwest area of Hungary. PM2.5 aerosol samples were collected in two different sampling sites and the trace metal(loid) (Pb, Ni, Cd and As) content were analyzed by atomic absorption spectroscopy. The concentration of PM2.5 fraction was varied between 12.22 and 36.92 μg/m3 at the two sampling sites. The trend of heavy metal mean concentrations regarding the mean value of the two urban sites of Győr was found in decreasing order of Pb > Ni > Cd. The mean values were 7.59 ng/m3 for Pb, 0.34 ng/m3 for Ni and 0.11 ng/m3 for Cd, respectively. The metalloid As could be detected only in 3.57% of the total collected samples. The levels of PM2.5 bounded heavy metals were determined and compared with other cities located in Hungary.

Impact of Flexibility on Residential Buildings in Egypt

There is a critical thin line between freedom of choice and randomness. The distance between imagination and perception and between perception and execution varies depending on numerous factors. While in developed areas residents have the opportunity and abilities to build flexible homes, residents in developing areas create their own dwellings in informal settlements, even though none of them is comfortable at home in the long run. This paper explores three factors: What residents really need, what they do with limited flexibility, and what they do when there are no limits, as in the case of informal settlements. This paper studies alteration to residential buildings and how they connect to the changes in people’s lifecycle in all past cases. This study also examines all approaches to flexibility, focusing on a social approach. The results of this study are based on three practical studies: Interviews with residents in an informal settlement (Eshash Mahfouz in Minya in Egypt), a civil study of buildings in a middle-class district, and a survey of residents from many countries, including Egypt, and interviews with a number of them to determine residents’ needs and the extent of renovations they made or would like to make to their homes.

On the Construction of Lightweight Circulant Maximum Distance Separable Matrices

MDS matrices are of great significance in the design of block ciphers and hash functions. In the present paper, we investigate the problem of constructing MDS matrices which are both lightweight and low-latency. We propose a new method of constructing lightweight MDS matrices using circulant matrices which can be implemented efficiently in hardware. Furthermore, we provide circulant MDS matrices with as few bit XOR operations as possible for the classical dimensions 4 × 4, 8 × 8 over the space of linear transformations over finite field F42 . In contrast to previous constructions of MDS matrices, our constructions have achieved fewer XORs.

Proposed Program for Developing Some Concepts for Nursery School Children in Egypt Using Artistic Activities

The study presents a proposed program for nursery school children in Egypt. The program consists of a collection of artistic activities and aims to develop the language, mathematical, and artistic skills of preschool children. Furthermore, the researcher has presented a questionnaire to experts about the link between the target group and the content. Finally, the proposed program was applied to group of 30 children. In addition, the researcher has prepared another questionnaire for measuring the effect of the program. This questionnaire was used as a pre-test and post-test, and at the end of the study, a significant difference was determined in favour of the post-test results.

Evidence Theory Enabled Quickest Change Detection Using Big Time-Series Data from Internet of Things

Traditionally in sensor networks and recently in the Internet of Things, numerous heterogeneous sensors are deployed in distributed manner to monitor a phenomenon that often can be model by an underlying stochastic process. The big time-series data collected by the sensors must be analyzed to detect change in the stochastic process as quickly as possible with tolerable false alarm rate. However, sensors may have different accuracy and sensitivity range, and they decay along time. As a result, the big time-series data collected by the sensors will contain uncertainties and sometimes they are conflicting. In this study, we present a framework to take advantage of Evidence Theory (a.k.a. Dempster-Shafer and Dezert-Smarandache Theories) capabilities of representing and managing uncertainty and conflict to fast change detection and effectively deal with complementary hypotheses. Specifically, Kullback-Leibler divergence is used as the similarity metric to calculate the distances between the estimated current distribution with the pre- and post-change distributions. Then mass functions are calculated and related combination rules are applied to combine the mass values among all sensors. Furthermore, we applied the method to estimate the minimum number of sensors needed to combine, so computational efficiency could be improved. Cumulative sum test is then applied on the ratio of pignistic probability to detect and declare the change for decision making purpose. Simulation results using both synthetic data and real data from experimental setup demonstrate the effectiveness of the presented schemes.

Embedding the Dimensions of Sustainability into City Information Modelling

The purpose of this paper is to address the functions of sustainability dimensions in city information modelling and to present the required sustainability criteria that support establishing a sustainable planning framework for enhancing existing cities and developing future smart cities. The paper is divided into two sections. The first section is based on the examination of a wide and extensive array of cross-disciplinary literature in the last decade and a half to conceptualize the terms ‘sustainable’ and ‘smart city’, and map their associated criteria to city information modelling. The second section is based on analyzing two approaches relating to city information modelling, namely statistical and dynamic approaches, and their suitability in the development of cities’ action plans. The paper argues that the use of statistical approaches to embed sustainability dimensions in city information modelling have limited value. Despite the popularity of such approaches in addressing other dimensions like utility and service management in development and action plans of the world cities, these approaches are unable to address the dynamics across various city sectors with regards to economic, environmental and social criteria. The paper suggests an integrative dynamic and cross-disciplinary planning approach to embedding sustainability dimensions in city information modelling frameworks. Such an approach will pave the way towards optimal planning and implementation of priority actions of projects and investments. The approach can be used to achieve three main goals: (1) better development and action plans for world cities (2) serve the development of an integrative dynamic and cross-disciplinary framework that incorporates economic, environmental and social sustainability criteria and (3) address areas that require further attention in the development of future sustainable and smart cities. The paper presents an innovative approach for city information modelling and a well-argued, balanced hierarchy of sustainability criteria that can contribute to an area of research which is still in its infancy in terms of development and management.

Surface Topography Measurement by Confocal Spectral Interferometry

Confocal spectral interferometry (CSI) is an innovative optical method for determining microtopography of surfaces and thickness of transparent layers, based on the combination of two optical principles: confocal imaging, and spectral interferometry. Confocal optical system images at each instant a single point of the sample. The whole surface is reconstructed by plan scanning. The interference signal generated by mixing two white-light beams is analyzed using a spectrometer. In this work, five ‘rugotests’ of known standard roughnesses are investigated. The topography is then measured and illustrated, and the equivalent roughness is determined and compared with the standard values.

Investigation on Unsteady Flow of a Turbine Stage with Negative Bowed Stator

Complicated unsteady flow in axial turbines produces high-frequency unsteady aerodynamic exciting force, which threatens the safe operation of turbines. This paper illustrates how negative-bowed stator reduces the rotor unsteady aerodynamic exciting force by unsteady flow field. With the support of three-dimensional viscous compressible Navier-Stokes equation, the single axial turbines with 0, -10 and -20 degree bowed stator are comparably investigated, aiming to identify the flow field structure difference caused by various negative-bowed degrees. The results show that negative-bowed stator strengthens the turbulence kinetic energy, which is further strengthened with the increase of negative-bowed degree. Meanwhile, the flow phenomenon including stator wakes and passage vortex is shown. In addition, the interaction of upstream negative-bowed wakes contributes to the reduction of unsteady blade load fluctuation. Furthermore, the aerodynamic exciting force decreases with the increasing negative bowed degree, while the efficiency is correspondingly reduced. This paper provides the reference for the alleviation of the harmful impact caused by unsteady interaction with the method of wake control.

Female Work Force Participation and Women Empowerment in Haryana

India is known as a country of diversity regarding the social, cultural and wide geographical variations. In the north and north-west part of the country, the strong patriarchal norms and the male dominance based social structure are the important constructs. Patriarchal social setup adversely affects the women’s social and economic wellbeing and hence in that social structure women are considered as second level citizen. Work participation rate of women has directly linked to the development of society or household. Haryana is one of the developed states of India, still being ahead in economic prosperity, much lagged behind in gender-based equality and male dominance in all dimensions of life. The position of women in the Haryana is no better than the other states of India. Haryana state has the great difference among the male-female sex ratio which is a serious concern for social science research as a demographic problem for the state. Now women are requiring for their holistic empowerment and that will take care of them for an enabling process that must lead to their economic as well as social transformation. Hence, the objective of the paper is to address the role of sex ratio, women literacy and her work participation in the process of their empowerment with special attention to the gender perspective. The study used the data from Census of India from 1991 to 2011. This paper will examine the regional disparity of sex ratio, literacy rate and female work participation and the improvement of empowerment of women in the state of Haryana. This paper will suggest the idea for focusing much intensively on the issues of women empowerment through enhancement of her education, workforce participation and social participation with people participation and holistic approach.