Target Signal Detection Using MUSIC Spectrum in Noise Environment

In this paper, a target signal detection method using multiple signal classification (MUSIC) algorithm is proposed. The MUSIC algorithm is a subspace-based direction of arrival (DOA) estimation method. The algorithm detects the DOAs of multiple sources using the inverse of the eigenvalue-weighted eigen spectra. To apply the algorithm to target signal detection for GSC-based beamforming, we utilize its spectral response for the target DOA in noisy conditions. For evaluation of the algorithm, the performance of the proposed target signal detection method is compared with that of the normalized cross-correlation (NCC), the fixed beamforming, and the power ratio method. Experimental results show that the proposed algorithm significantly outperforms the conventional ones in receiver operating characteristics(ROC) curves.

Realization of Electronically Controllable Current-mode Square-rooting Circuit Based on MO-CFTA

This article proposes a current-mode square-rooting circuit using current follower transconductance amplifier (CTFA). The amplitude of the output current can be electronically controlled via input bias current with wide input dynamic range. The proposed circuit consists of only single CFTA. Without any matching conditions and external passive elements, the circuit is then appropriate for an IC architecture. The magnitude of the output signal is temperature-insensitive. The PSpice simulation results are depicted, and the given results agree well with the theoretical anticipation. The power consumption is approximately 1.96mW at ±1.5V supply voltages.

The Development of a Narrative Management System: Storytelling in Knowledge Management

This paper presents a narrative management system for organizations to capture organization's tacit knowledge through stories. The intention of capturing tacit knowledge is to address the problem that comes with the mobility of workforce in organisation. Storytelling in knowledge management context is seen as a powerful management tool to communicate tacit knowledge in organization. This narrative management system is developed firstly to enable uploading of many types of knowledge sharing stories, from general to work related-specific stories and secondly, each video has comment functionality where knowledge users can post comments to other knowledge users. The narrative management system allows the stories to browse, search and view by the users. In the system, stories are stored in a video repository. Stories that were produced from this framework will improve learning, knowledge transfer facilitation and tacit knowledge quality in an organization.

The Minimum PAPR Code for OFDM Systems

In this paper, a block code to minimize the peak-toaverage power ratio (PAPR) of orthogonal frequency division multiplexing (OFDM) signals is proposed. It is shown that cyclic shift and codeword inversion cause not change to peak envelope power. The encoding rule for the proposed code comprises of searching for a seed codeword, shifting the register elements, and determining codeword inversion, eliminating the look-up table for one-to-one correspondence between the source and the coded data. Simulation results show that OFDM systems with the proposed code always have the minimum PAPR.

A Micro-Watt Second Order Filter for a Chopper Stabilized MEMS Pressure Sensor Interface

This paper describes a low-power second-order filter for a continuous-time chopper stabilized capacitive sensor interface, integrated with a fully differential post-CMOS surface-micromachined MEMS pressure sensor. The circuit uses a single-ended folded-cascode operational amplifier and two GM-C filters connected in cascade. The circuit is realized in a 0.18 μm CMOS process and offers differential to single-ended conversion. The novelty of the scheme is the cascade of two GM-C filters to achieve a second-order filter while minimizing power dissipation. The simulated filter cutoff frequency is 1.14 kHz at common-mode voltage 1.65 V, operating from a 3.3 V supply while dissipating 172μW of power. The filter achieves an operating range of 1V for an output load of 1MOhm and 10pF.

A Power Conversion System using the Renewable Energies for HEV Charger

With a development of Hybrid Electric Vehicle(HEV), A photovoltaic(PV) generation system is used for charging batteries in many cases. A dc/dc converter using PV power for a battery charger requires a high efficiency. In this paper, A ZVS boost converter using the renewable energies for HEV charger is proposed. Through the theoretical analysis and experimental result, operation modes and characteristics of the proposed topology are verified.

Developing Efficient Testing and Unloading Procedures for a Local Sewage Holding Pit

A local municipality has decided to build a sewage pit to receive residential sewage waste arriving by tank trucks. Daily accumulated waste are to be pumped to a nearby waste water treatment facility to be re-consumed for agricultural and construction projects. A discrete-event simulation model using Arena Software was constructed to assist in defining the capacity of the system in cubic meters, number of tank trucks to use the system, number of unload docks required, number of standby areas needed and manpower required for data collection at entrance checkpoint and truck tank load toxicity testing. The results of the model are statistically validated. Simulation turned out to be an excellent tool in the facility planning effort for the pit project, as it insured smooth flow lines of tank trucks load discharge and best utilization of facilities on site.

Maintenance of Philosophical, Humanistic and Religious Values of Security of the Kazakh Nation

People have always needed to believe in some supernatural power, which could explain nature phenomena. Different kinds of religions like Christianity, Hinduism, Islam, Buddhism have thought believers in all world, how to behave themselves. We think the most important role of religion in modern society most important role of religion in modern society is safety of the People. World and traditional religion played a prominent role in the socio-cultural progress, and in the development of man as a spiritual being. At the heart of religious morals the belief in god and responsibility before it lies and specifies religious and ethical values and categories . The religion is based on ethical standards historically developed by society, requirements and concepts, but it puts all social and moral relations of the person in dependence on religious values. For everything that the believer makes on a debt or a duty, he bears moral responsibility before conscience, people and god. The concept of value of religious morals takes the central place because the religion from all forms of public consciousness most values is painted as it is urged to answer vital questions. Any religion not only considers questions of creation of the world, sense of human existence, relationship of god and the person, but also offers the ethical concept, develops rules of behavior of people. The religion a long time dominated in the history of culture, and during this time created a set of cultural and material values. The identity of Kazakh culture can be defined as a Cultural identity traditional ,national identity and the identity values developed by Kazakh people in process of cultural-historical development, promoting formation of Kazakh culture identity on public consciousness. Identity is the historical process but always the tradition exists in it as a component of stability, as a component of self that what this identity formed .

Active Control for Reduction of Noise Passing through Enclosure and Optimization of Microphone Position

In this study, noise characteristics of structure were analyzed in an effort to reduce noise passing through an opening of an enclosure surrounding the structure that generates noise. Enclosures are essential measure to protect noise propagation from operating machinery. Access openings of the enclosures are important path of noise leakage. First, noise characteristics of structure were analyzed and feed-forward noise control was performed using simulation in order to reduce noise passing through the opening of enclosure, which surrounds a structure generating noise. We then implemented a feed-forward controller to actively control the acoustic power through the opening. Finally, we conducted optimization of placement of the reference sensors for several cases of the number of sensors. Good control performances were achieved using the minimum number of microphones arranged an optimal placement.

Optimizing the Design of Radial/Axial PMSM and SRM used for Powered Wheel-Chairs

the paper presents the optimization results for several electrical machines dedicated for powered electric wheel-chairs. The optimization, using the Hook-Jeeves algorithm, was employed based on a design approach which takes into consideration the road conditions. Also, through numerical simulations (based on finite element method), the analytical approach was validated. The optimization approach gave satisfactory results and the best suited variant was chosen for the motorization of the wheel-chair.

Maximum Water Hammer Sensitivity Analysis

Pressure waves and Water Hammer occur in a pumping system when valves are closed or opened suddenly or in the case of sudden failure of pumps. Determination of maximum water hammer is considered one of the most important technical and economical items of which engineers and designers of pumping stations and conveyance pipelines should take care. Hammer Software is a recent application used to simulate water hammer. The present study focuses on determining significance of each input parameter of the application relative to the maximum amount of water hammer estimated by the software. The study determines estimated maximum water hammer variations due to variations of input parameters including water temperature, pipe type, thickness and diameter, electromotor rpm and power, and moment of inertia of electromotor and pump. In our study, Kuhrang Pumping Station was modeled using WaterGEMS Software. The pumping station is characterized by total discharge of 200 liters per second, dynamic height of 194 meters and 1.5 kilometers of steel conveyance pipeline and transports water to Cheshme Morvarid for farmland irrigation. The model was run in steady hydraulic condition and transferred to Hammer Software. Then, the model was run in several unsteady hydraulic conditions and sensitivity of maximum water hammer to each input parameter was calculated. It is shown that parameters to which maximum water hammer is most sensitive are moment of inertia of pump and electromotor, diameter, type and thickness of pipe and water temperature, respectively.

Mathematical Correlation for Brake Thermal Efficiency and NOx Emission of CI Engine using Ester of Vegetable Oils

The aim of this study is to develop mathematical relationships for the performance parameter brake thermal efficiency (BTE) and emission parameter nitrogen oxides (NOx) for the various esters of vegetable oils used as CI engine fuel. The BTE is an important performance parameter defining the ability of engine to utilize the energy supplied and power developed similarly it is indication of efficiency of fuels used. The esters of cottonseed oil, soybean oil, jatropha oil and hingan oil are prepared using transesterification process and characterized for their physical and main fuel properties including viscosity, density, flash point and higher heating value using standard test methods. These esters are tried as CI engine fuel to analyze the performance and emission parameters in comparison to diesel. The results of the study indicate that esters as a fuel does not differ greatly with that of diesel in properties. The CI engine performance with esters as fuel is in line with the diesel where as the emission parameters are reduced with the use of esters. The correlation developed between BTE and brake power(BP), gross calorific value(CV), air-fuel ratio(A/F), heat carried away by cooling water(HCW). Another equation is developed between the NOx emission and CO, HC, smoke density (SD), exhaust gas temperature (EGT). The equations are verified by comparing the observed and calculated values which gives the coefficient of correlation of 0.99 and 0.96 for the BTE and NOx equations respectively.

Evaluation of New Product Development Projects using Artificial Intelligence and Fuzzy Logic

As a vital activity for companies, new product development (NPD) is also a very risky process due to the high uncertainty degree encountered at every development stage and the inevitable dependence on how previous steps are successfully accomplished. Hence, there is an apparent need to evaluate new product initiatives systematically and make accurate decisions under uncertainty. Another major concern is the time pressure to launch a significant number of new products to preserve and increase the competitive power of the company. In this work, we propose an integrated decision-making framework based on neural networks and fuzzy logic to make appropriate decisions and accelerate the evaluation process. We are especially interested in the two initial stages where new product ideas are selected (go/no go decision) and the implementation order of the corresponding projects are determined. We show that this two-staged intelligent approach allows practitioners to roughly and quickly separate good and bad product ideas by making use of previous experiences, and then, analyze a more shortened list rigorously.

Integration of Resistive Switching Memory Cell with Vertical Nanowire Transistor

We integrate TiN/Ni/HfO2/Si RRAM cell with a vertical gate-all-around (GAA) nanowire transistor to achieve compact 4F2 footprint in a 1T1R configuration. The tip of the Si nanowire (source of the transistor) serves as bottom electrode of the memory cell. Fabricated devices with nanowire diameter ~ 50nm demonstrate ultra-low current/power switching; unipolar switching with 10μA/30μW SET and 20μA/30μW RESET and bipolar switching with 20nA/85nW SET and 0.2nA/0.7nW RESET. Further, the switching current is found to scale with nanowire diameter making the architecture promising for future scaling.

Theoretical Investigations on Different Casing and Rotor Diameters Ratio to Optimize Shaft Output of a Vaned Type Air Turbine

This paper details a new concept of using compressed air as a potential zero pollution power source for motorbikes. In place of an internal combustion engine, the motorbike is equipped with an air turbine transforms the energy of the compressed air into shaft work. The mathematical modeling and performance evaluation of a small capacity compressed air driven vaned type novel air turbine is presented in this paper. The effect of isobaric admission and adiabatic expansion of high pressure air for different rotor diameters, casing diameters and ratio of rotor to casing diameters of the turbine have been considered and analyzed. It is concluded that the work output is found optimum for some typical values of rotor / casing diameter ratios. In this study, the maximum power works out to 3.825 kW (5.20 HP) for casing diameter of 200 mm and rotor to casing diameter ratio of 0.65 to 0.60 which is sufficient to run motorbike.

Reducing Power in Error Correcting Code using Genetic Algorithm

This paper proposes a method which reduces power consumption in single-error correcting, double error-detecting checker circuits that perform memory error correction code. Power is minimized with little or no impact on area and delay, using the degrees of freedom in selecting the parity check matrix of the error correcting codes. The genetic algorithm is employed to solve the non linear power optimization problem. The method is applied to two commonly used SEC-DED codes: standard Hamming and odd column weight Hsiao codes. Experiments were performed to show the performance of the proposed method.

Transformer Diagnosis Based on Coupled Circuits Method Modelling

Diagnostic goal of transformers in service is to detect the winding or the core in fault. Transformers are valuable equipment which makes a major contribution to the supply security of a power system. Consequently, it is of great importance to minimize the frequency and duration of unwanted outages of power transformers. So, Frequency Response Analysis (FRA) is found to be a useful tool for reliable detection of incipient mechanical fault in a transformer, by finding winding or core defects. The authors propose as first part of this article, the coupled circuits method, because, it gives most possible exhaustive modelling of transformers. And as second part of this work, the application of FRA in low frequency in order to improve and simplify the response reading. This study can be useful as a base data for the other transformers of the same categories intended for distribution grid.

Numerical Simulation of Flow Field in a Elliptic Bottom Stirred Tank with Bottom Baffles

When the crisscross baffles and logarithmic spiral baffles are placed on the bottom of the stirred tank with elliptic bottom, using CFD software FLUENT simulates the velocity field of the stirred tank with elliptic bottom and bottom baffles. Compare the velocity field of stirred tank with bottom crisscross baffle to the velocity field of stirred tank without bottom baffle and analysis the flow pattern on the same axis-section and different cross-sections. The sizes of the axial and radial velocity are compared respectively when the stirred tank with bottom crisscross baffles, bottom logarithmic spiral baffles and without bottom baffle. At the same time, the numerical calculations of mixing power are compared when the stirred tank with bottom crisscross baffles and bottom logarithmic spiral baffles. Research shows that bottom crisscross baffles and logarithmic spiral baffles have a great impact on flow pattern within the reactor and improve the mixing effect better than without baffle. It also has shown that bottom logarithmic spiral baffles has lower power consumption than bottom crisscross baffles.

WDM-Based Storage Area Network (SAN) for Disaster Recovery Operations

This paper proposes a Wavelength Division Multiplexing (WDM) technology based Storage Area Network (SAN) for all type of Disaster recovery operation. It considers recovery when all paths failure in the network as well as the main SAN site failure also the all backup sites failure by the effect of natural disasters such as earthquakes, fires and floods, power outage, and terrorist attacks, as initially SAN were designed to work within distance limited environments[2]. Paper also presents a NEW PATH algorithm when path failure occurs. The simulation result and analysis is presented for the proposed architecture with performance consideration.

Optimization of PEM Fuel Cell Biphasic Model

The optimal operation of proton exchange membrane fuel cell (PEMFC) requires good water management which is presented under two forms vapor and liquid. Moreover, fuel cells have to reach higher output require integration of some accessories which need electrical power. In order to analyze fuel cells operation and different species transport phenomena a biphasic mathematical model is presented by governing equations set. The numerical solution of these conservation equations is calculated by Matlab program. A multi-criteria optimization with weighting between two opposite objectives is used to determine the compromise solutions between maximum output and minimal stack size. The obtained results are in good agreement with available literature data.