Submicron Laser-Induced Dot, Ripple and Wrinkle Structures and Their Applications

Polymers exposed to laser or plasma treatment or modified with different wet methods which enable the introduction of nanoparticles or biologically active species, such as amino-acids, may find many applications both as biocompatible or anti-bacterial materials or on the contrary, can be applied for a decrease in the number of cells on the treated surface which opens application in single cell units. For the experiments, two types of materials were chosen, a representative of non-biodegradable polymers, polyethersulphone (PES) and polyhydroxybutyrate (PHB) as biodegradable material. Exposure of solid substrate to laser well below the ablation threshold can lead to formation of various surface structures. The ripples have a period roughly comparable to the wavelength of the incident laser radiation, and their dimensions depend on many factors, such as chemical composition of the polymer substrate, laser wavelength and the angle of incidence. On the contrary, biopolymers may significantly change their surface roughness and thus influence cell compatibility. The focus was on the surface treatment of PES and PHB by pulse excimer KrF laser with wavelength of 248 nm. The changes of physicochemical properties, surface morphology, surface chemistry and ablation of exposed polymers were studied both for PES and PHB. Several analytical methods involving atomic force microscopy, gravimetry, scanning electron microscopy and others were used for the analysis of the treated surface. It was found that the combination of certain input parameters leads not only to the formation of optimal narrow pattern, but to the combination of a ripple and a wrinkle-like structure, which could be an optimal candidate for cell attachment. The interaction of different types of cells and their interactions with the laser exposed surface were studied. It was found that laser treatment contributes as a major factor for wettability/contact angle change. The combination of optimal laser energy and pulse number was used for the construction of a surface with an anti-cellular response. Due to the simple laser treatment, we were able to prepare a biopolymer surface with higher roughness and thus significantly influence the area of growth of different types of cells (U-2 OS cells).

Incineration of Sludge in a Fluidized-Bed Combustor

For sludge disposal, incineration is considered to be better than direct burial because of regulations and space limitations in Taiwan. Additionally, burial after incineration can effectively prolong the lifespan of a landfill. Therefore, it is the most satisfactory method for treating sludge at present. Of the various incineration technologies, the fluidized bed incinerator is a suitable choice due to its fuel flexibility. In this work, sludge generated from industrial plants was treated in a pilot-scale vortexing fluidized bed. The moisture content of the sludge was 48.53%, and its LHV was 454.6 kcal/kg. Primary gas and secondary gas were fixed at 3 Nm3/min and 1 Nm3/min, respectively. Diesel burners with on-off controllers were used to control the temperature; the bed temperature was set to 750±20 °C, and the freeboard temperature was 850±20 °C. The experimental data show that the NO emission increased with bed temperature. The maximum NO emission is 139 ppm, which is in agreement with the regulation. The CO emission is low than 100 ppm through the operation period. The mean particle size of fly ash collected from baghouse decreased with operating time. The ration of bottom ash to fly ash is about 3. Compared with bottom ash, the potassium in the fly ash is much higher. It implied that the potassium content is not the key factor for aggregation of bottom ash.

Failure Mechanism in Fixed-Ended Reinforced Concrete Deep Beams under Cyclic Load

Reinforced Concrete (RC) deep beams are a special type of beams due to their geometry, boundary conditions, and behavior compared to ordinary shallow beams. For example, assumption of a linear strain-stress distribution in the cross section is not valid. Little study has been dedicated to fixed-end RC deep beams. Also, most experimental studies are carried out on simply supported deep beams. Regarding recent tendency for application of deep beams, possibility of using fixed-ended deep beams has been widely increased in structures. Therefore, it seems necessary to investigate the aforementioned structural element in more details. In addition to experimental investigation of a concrete deep beam under cyclic load, different failure mechanisms of fixed-ended deep beams under this type of loading have been evaluated in the present study. The results show that failure mechanisms of deep beams under cyclic loads are quite different from monotonic loads.

Estimating Marine Tidal Power Potential in Kenya

The rapidly diminishing fossil fuel reserves, their exorbitant cost and the increasingly apparent negative effect of fossil fuels to climate changes is a wake-up call to explore renewable energy. Wind, bio-fuel and solar power have already become staples of Kenyan electricity mix. The potential of electric power generation from marine tidal currents is enormous, with oceans covering more than 70% of the earth. However, attempts to harness marine tidal energy in Kenya, has yet to be studied thoroughly due to its promising, cyclic, reliable and predictable nature and the vast energy contained within it. The high load factors resulting from the fluid properties and the predictable resource characteristics make marine currents particularly attractive for power generation and advantageous when compared to others. Global-level resource assessments and oceanographic literature and data have been compiled in an analysis of the technology-specific requirements for tidal energy technologies and the physical resources. Temporal variations in resource intensity as well as the differences between small-scale applications are considered.

Extraction of Forest Plantation Resources in Selected Forest of San Manuel, Pangasinan, Philippines Using LiDAR Data for Forest Status Assessment

Forest inventories are essential to assess the composition, structure and distribution of forest vegetation that can be used as baseline information for management decisions. Classical forest inventory is labor intensive and time-consuming and sometimes even dangerous. The use of Light Detection and Ranging (LiDAR) in forest inventory would improve and overcome these restrictions. This study was conducted to determine the possibility of using LiDAR derived data in extracting high accuracy forest biophysical parameters and as a non-destructive method for forest status analysis of San Manual, Pangasinan. Forest resources extraction was carried out using LAS tools, GIS, Envi and .bat scripts with the available LiDAR data. The process includes the generation of derivatives such as Digital Terrain Model (DTM), Canopy Height Model (CHM) and Canopy Cover Model (CCM) in .bat scripts followed by the generation of 17 composite bands to be used in the extraction of forest classification covers using ENVI 4.8 and GIS software. The Diameter in Breast Height (DBH), Above Ground Biomass (AGB) and Carbon Stock (CS) were estimated for each classified forest cover and Tree Count Extraction was carried out using GIS. Subsequently, field validation was conducted for accuracy assessment. Results showed that the forest of San Manuel has 73% Forest Cover, which is relatively much higher as compared to the 10% canopy cover requirement. On the extracted canopy height, 80% of the tree’s height ranges from 12 m to 17 m. CS of the three forest covers based on the AGB were: 20819.59 kg/20x20 m for closed broadleaf, 8609.82 kg/20x20 m for broadleaf plantation and 15545.57 kg/20x20m for open broadleaf. Average tree counts for the tree forest plantation was 413 trees/ha. As such, the forest of San Manuel has high percent forest cover and high CS.

Consumer Choice Determinants in Context of Functional Food

The aim of this study was to analyze and evaluate the consumption of functional food by consumers by: age, sex, formal education level, place of residence and diagnosed diseases. The study employed an ad hoc questionnaire in a group of 300 inhabitants of Upper Silesia voivodship. Knowledge of functional food among the group covered in the study was far from satisfactory. The choice of functional food was of intuitive character. In addition, the group covered was more likely to choose pharmacotherapy instead of diet-related prevention then, which can be associated with presumption of too distant effects and a long period of treatment.

Necessary Condition to Utilize Adaptive Control in Wind Turbine Systems to Improve Power System Stability

The global capacity of wind power has dramatically increased in recent years. Therefore, improving the technology of wind turbines to take different advantages of this enormous potential in the power grid, could be interesting subject for scientists. The doubly-fed induction generator (DFIG) wind turbine is a popular system due to its many advantages such as the improved power quality, high energy efficiency and controllability, etc. With an increase in wind power penetration in the network and with regard to the flexible control of wind turbines, the use of wind turbine systems to improve the dynamic stability of power systems has been of significance importance for researchers. Subsynchronous oscillations are one of the important issues in the stability of power systems. Damping subsynchronous oscillations by using wind turbines has been studied in various research efforts, mainly by adding an auxiliary control loop to the control structure of the wind turbine. In most of the studies, this control loop is composed of linear blocks. In this paper, simple adaptive control is used for this purpose. In order to use an adaptive controller, the convergence of the controller should be verified. Since adaptive control parameters tend to optimum values in order to obtain optimum control performance, using this controller will help the wind turbines to have positive contribution in damping the network subsynchronous oscillations at different wind speeds and system operating points. In this paper, the application of simple adaptive control in DFIG wind turbine systems to improve the dynamic stability of power systems is studied and the essential condition for using this controller is considered. It is also shown that this controller has an insignificant effect on the dynamic stability of the wind turbine, itself.

Forced Vibration of a Planar Curved Beam on Pasternak Foundation

The objective of this study is to investigate the forced vibration analysis of a planar curved beam lying on elastic foundation by using the mixed finite element method. The finite element formulation is based on the Timoshenko beam theory. In order to solve the problems in frequency domain, the element matrices of two nodded curvilinear elements are transformed into Laplace space. The results are transformed back to the time domain by the well-known numerical Modified Durbin’s transformation algorithm. First, the presented finite element formulation is verified through the forced vibration analysis of a planar curved Timoshenko beam resting on Winkler foundation and the finite element results are compared with the results available in the literature. Then, the forced vibration analysis of a planar curved beam resting on Winkler-Pasternak foundation is conducted.

Hand Controlled Mobile Robot Applied in Virtual Environment

By the development of IT systems, human-computer interaction is also developing even faster and newer communication methods become available in human-machine interaction. In this article, the application of a hand gesture controlled human-computer interface is being introduced through the example of a mobile robot. The control of the mobile robot is implemented in a realistic virtual environment that is advantageous regarding the aspect of different tests, parallel examinations, so the purchase of expensive equipment is unnecessary. The usability of the implemented hand gesture control has been evaluated by test subjects. According to the opinion of the testing subjects, the system can be well used, and its application would be recommended on other application fields too.

Separation Characteristics of Dissolved Gases from Water Concurrently Variable Mixed with Exhalations for the Hollow Fiber Membrane

Water contains dissolved oxygen that a fish needs to breathe. It is important to increase the amounts of separation of dissolved oxygen from water for diverse applications using the separation system. In this paper, a separation system of dissolved gases from water concurrently variable mixed with the exhalations using a compressor is proposed. This system takes use of exhalations to increase the amounts of separation of dissolved oxygen from water. A compressor with variable off-time and on-time is used to control the exhalations mixed with inlet water. Exhalations contain some portion of carbon dioxide, oxygen, and nitrogen. Separation of dissolved gases containing dissolved oxygen is enhanced by using exhalations. The amounts of separation and the compositions of carbon dioxide and oxygen are measured. Higher amounts of separation can make the size of the separation device smaller, and then, application areas are diversified.

Ice Load Measurements on Known Structures Using Image Processing Methods

This study employs a method based on image analyses and structure information to detect accumulated ice on known structures. The icing of marine vessels and offshore structures causes significant reductions in their efficiency and creates unsafe working conditions. Image processing methods are used to measure ice loads automatically. Most image processing methods are developed based on captured image analyses. In this method, ice loads on structures are calculated by defining structure coordinates and processing captured images. A pyramidal structure is designed with nine cylindrical bars as the known structure of experimental setup. Unsymmetrical ice accumulated on the structure in a cold room represents the actual case of experiments. Camera intrinsic and extrinsic parameters are used to define structure coordinates in the image coordinate system according to the camera location and angle. The thresholding method is applied to capture images and detect iced structures in a binary image. The ice thickness of each element is calculated by combining the information from the binary image and the structure coordinate. Averaging ice diameters from different camera views obtains ice thicknesses of structure elements. Comparison between ice load measurements using this method and the actual ice loads shows positive correlations with an acceptable range of error. The method can be applied to complex structures defining structure and camera coordinates.

Introduction to Political Psychoanalysis of a Group in the Middle East

The present study focuses on investigating group psychoanalysis in the Middle East. The study uses a descriptive-analytic method and library resources have been used to collect the data. Additionally, the researcher’s observations of people’s everyday behavior have played an important role in the production and analysis of the study. Group psychoanalysis in the Middle East can be conducted through people’s daily behaviors, proverbs, poetry, mythology, etc., and some of the general characteristics of people in the Middle East include: xenophobia, revivalism, fatalism, nostalgic, wills and so on. Members of the group have often failed to achieve Libido wills and it is very important in unifying and reproduction violence. Therefore, if libidinal wills are irrationally fixed, it will be important in forming fundamentalist and racist groups, a situation that is dominant among many groups in the Middle East. Adversities, from early childhood and afterwards, in the subjects have always been influential in the political behavior of group members, and it manifests itself as counter-projections. Consequently, it affects the foreign policy of the governments. On the other hand, two kinds of subjects are identifiable in the Middle East, one; classical subject that is related to nostalgia and mythology and, two; modern subjects which is self-alienated. As a result, both subjects are seeking identity and self-expression in public in relation to forming groups. Therefore, collective unconscious in the Middle East shows itself as extreme boundaries and leads to forming groups characterized with violence. Psychoanalysis shows important aspects to identify many developments in the Middle East; totally analysis of Freud, Carl Jung and Reich about groups can be applied in the present Middle East.

Zero Divisor Graph of a Poset with Respect to Primal Ideals

In this paper, we extend the concepts of primal and weakly primal ideals for posets. Further, the diameter of the zero divisor graph of a poset with respect to a non-primal ideal is determined. The relation between primary and primal ideals in posets is also studied.

Laboratory Analysis of Stormwater Runoff Hydraulic and Pollutant Removal Performance of Pervious Concrete Based on Seashell By-Products

In order to solve problems associated with stormwater runoff in urban areas and their effects on natural and artificial water bodies, the integration of new technical solutions to the rainwater drainage becomes even more essential. Permeable pavement systems are one of the most widely used techniques. This paper presents a laboratory analysis of stormwater runoff hydraulic and pollutant removal performance of permeable pavement system using pervious pavements based on seashell products. The laboratory prototype is a square column of 25 cm of side and consists of the surface in pervious concrete, a bedding of 3 cm in height, a geotextile and a subbase layer of 50 cm in height. A series of constant simulated rain events using semi-synthetic runoff which varied in intensity and duration were carried out. The initial vertical saturated hydraulic conductivity of the entire pervious pavement system was 0.25 cm/s (148 L/m2/min). The hydraulic functioning was influenced by both the inlet flow rate value and the test duration. The total water losses including evaporation ranged between 9% to 20% for all hydraulic experiments. The temporal and vertical variability of the pollutant removal efficiency (PRE) of the system were studied for total suspended solids (TSS). The results showed that the PRE along the vertical profile was influenced by the size of the suspended solids, and the pervious paver has the highest capacity to trap pollutant than the other porous layers of the permeable pavement system after the geotextile. The TSS removal efficiency was about 80% for the entire system. The first-flush effect of TSS was observed, but it appeared only at the beginning (2 to 6 min) of the experiments. It has been shown that the PPS can capture first-flush. The project in which this study is integrated aims to contribute to both the valorization of shellfish waste and the sustainable management of rainwater.

Sociodemographic Risk Factors of Cervical Cancer in Imphal, Manipur

Cervical cancer is preventable if detected early. Determination of risk factors is essential to plan screening programmes to prevent the disease. To study the demographic risk factors of cervical cancer among Manipuri women, information on age, marital status, educational level, monthly family income and socioeconomic status were collected through a pre-tested interview schedule. In this study, 64 incident cases registered at the RT Dept, RIMS (Regional Institute of Medical Sciences), Imphal, Manipur, India during 2008-09 participated. Data were entered in Microsoft Excel and the results were expressed in percentages. Among the 64 patients with cervical cancer, 56 (88.9%) were in the age group of 40+ years. The majority of the patients were from rural areas (68.75%) and 31.25% were from urban areas. The majority of the patients were Hindus (73%), 55(85.9%) were of low educational level, 43(67.2%) were married, and 36 (56.25%) belonged to Class IV socioeconomic status. In conclusion, if detected early, cervical cancer is preventable and curable. The potential risk factors need to be identified and women in the risk group need to be motivated for screening. Affordable screening programmes and health care resources will help in lessening the burden of the disease.

Tribological Behaviour of Si-Cu-Mo-Ni Alloyed Austempered Ductile Iron

Ductile iron samples alloyed with 2.5% Si, 0.78% Cu, 0.421% Mo and 0.151% Ni were austempered at 345 °C and 380 °C for 150 and 180 mins and then tested for wear strength. Ductile iron was also included in the study for comparison purposes. A pin-on-disc machine was employed for wear study. The investigations were carried out for a speed of 3 m/s, under the contact load of 29.43 N with varying sliding distances ranging from 1000 m to 5000 m. The experimental outcome indicates that ADI austempered at 345 °C is more wear resistant than the one austempered at 380 °C. Also for only a sliding distance of 3000 m, both exhibited almost same wear resistance. SEM analysis indicates running sliding marks more or less parallel to one another. Spalled layers and large voids which resemble delamination were observed on worn surface of ADI380. This indicated the occurrence of severe wear. Dark patches observed indicate oxidized surface.

Intellectual Property Rights and Health Rights: A Feasible Reform Proposal to Facilitate Access to Drugs in Developing Countries

The non-effectiveness of certain codified human rights is particularly apparent with reference to the lack of access to essential drugs in developing countries, which represents a breach of the human right to receive adequate health assistance. This paper underlines the conflict and the legal contradictions between human rights, namely health rights, international Intellectual Property Rights, in particular patent law, as well as international trade law. The paper discusses the crucial links between R&D costs for innovation, patents and new medical drugs, with the goal of reformulating the hierarchies of priorities and of interests at stake in the international intellectual property (IP) law system. Different from what happens today, International patent law should be a legal instrument apt at rebalancing an axiological asymmetry between the (conflicting) needs at stake The core argument in the paper is the proposal of an alternative pathway, namely a feasible proposal for a patent law reform. IP laws tend to balance the benefits deriving from innovation with the costs of the provided monopoly, but since developing countries and industrialized countries are in completely different political and economic situations, it is necessary to (re)modulate such exchange according to the different needs. Based on this critical analysis, the paper puts forward a proposal, called Trading Time for Space (TTS), whereby a longer time for patent exclusive life in western countries (Time) is offered to the patent holder company, in exchange for the latter selling the medical drug at cost price in developing countries (Space). Accordingly, pharmaceutical companies should sell drugs in developing countries at the cost price, or alternatively grant a free license for the sale in such countries, without any royalties or fees. However, such social service shall be duly compensated. Therefore, the consideration for such a service shall be an extension of the temporal duration of the patent’s exclusive in the country of origin that will compensate the reduced profits caused by the supply at the price cost in developing countries.

Regression Approach for Optimal Purchase of Hosts Cluster in Fixed Fund for Hadoop Big Data Platform

Given a fixed fund, purchasing fewer hosts of higher capability or inversely more of lower capability is a must-be-made trade-off in practices for building a Hadoop big data platform. An exploratory study is presented for a Housing Big Data Platform project (HBDP), where typical big data computing is with SQL queries of aggregate, join, and space-time condition selections executed upon massive data from more than 10 million housing units. In HBDP, an empirical formula was introduced to predict the performance of host clusters potential for the intended typical big data computing, and it was shaped via a regression approach. With this empirical formula, it is easy to suggest an optimal cluster configuration. The investigation was based on a typical Hadoop computing ecosystem HDFS+Hive+Spark. A proper metric was raised to measure the performance of Hadoop clusters in HBDP, which was tested and compared with its predicted counterpart, on executing three kinds of typical SQL query tasks. Tests were conducted with respect to factors of CPU benchmark, memory size, virtual host division, and the number of element physical host in cluster. The research has been applied to practical cluster procurement for housing big data computing.

Online Prediction of Nonlinear Signal Processing Problems Based Kernel Adaptive Filtering

This paper presents two of the most knowing kernel adaptive filtering (KAF) approaches, the kernel least mean squares and the kernel recursive least squares, in order to predict a new output of nonlinear signal processing. Both of these methods implement a nonlinear transfer function using kernel methods in a particular space named reproducing kernel Hilbert space (RKHS) where the model is a linear combination of kernel functions applied to transform the observed data from the input space to a high dimensional feature space of vectors, this idea known as the kernel trick. Then KAF is the developing filters in RKHS. We use two nonlinear signal processing problems, Mackey Glass chaotic time series prediction and nonlinear channel equalization to figure the performance of the approaches presented and finally to result which of them is the adapted one.

Genetic Algorithm Optimization of a Small Scale Natural Gas Liquefaction Process

An optimization scheme based on COM server is suggested for communication between Genetic Algorithm (GA) toolbox of MATLAB and Aspen HYSYS. The structure and details of the proposed framework are discussed. The power of the developed scheme is illustrated by its application to the optimization of a recently developed natural gas liquefaction process in which Aspen HYSYS was used for minimization of the power consumption by optimizing the values of five operating variables. In this work, optimization by coupling between the GA in MATLAB and Aspen HYSYS model of the same process using the same five decision variables enabled improvements in power consumption by 3.3%, when 77% of the natural gas feed is liquefied. Also on inclusion of the flow rates of both nitrogen and carbon dioxide refrigerants as two additional decision variables, the power consumption decreased by 6.5% for a 78% liquefaction of the natural gas feed.