Nonlinear Effects in Stiffness Modeling of Robotic Manipulators

The paper focuses on the enhanced stiffness modeling of robotic manipulators by taking into account influence of the external force/torque acting upon the end point. It implements the virtual joint technique that describes the compliance of manipulator elements by a set of localized six-dimensional springs separated by rigid links and perfect joints. In contrast to the conventional formulation, which is valid for the unloaded mode and small displacements, the proposed approach implicitly assumes that the loading leads to the non-negligible changes of the manipulator posture and corresponding amendment of the Jacobian. The developed numerical technique allows computing the static equilibrium and relevant force/torque reaction of the manipulator for any given displacement of the end-effector. This enables designer detecting essentially nonlinear effects in elastic behavior of manipulator, similar to the buckling of beam elements. It is also proposed the linearization procedure that is based on the inversion of the dedicated matrix composed of the stiffness parameters of the virtual springs and the Jacobians/Hessians of the active and passive joints. The developed technique is illustrated by an application example that deals with the stiffness analysis of a parallel manipulator of the Orthoglide family

Gap Analysis of Cassava Sector in Cameroon

Recently, Cassava has been the driving force of many developing countries- economic progress. To attain this level, prerequisites were put in place enabling cassava sector to become an industrial and a highly competitive crop. Cameroon can achieve the same results. Moreover, it can upgrade the living conditions of both rural and urban dwellers and stimulate the development of the whole economy. Achieving this outcome calls for agricultural policy reforms. The adoption and implementation of adequate policies go along with efficient strategies. To choose effective strategies, an indepth investigation of the sector-s problems is highly recommended. This paper uses gap analysis method to evaluate cassava sector in Cameroon. It studies the present situation (where it is now), interrogates the future (where it should be) and finally proposes solutions to fill the gap.

Thermal and Mechanical Properties of Basalt Fibre Reinforced Concrete

In this study, the thermal and mechanical properties of basalt fibre reinforced concrete were investigated. The volume fractions of basalt fibre of (0.1, 0.2, 0.3, and 0.5% by total mix volume) were used. Properties such as heat transfer, compressive and splitting tensile strengths were examined. Results indicated that the strength increases with increase the fibre content till 0.3% then there is a slight reduction when 0.5% fibre used. Lower amount of heat conducted through the thickness of concrete specimens than the conventional concrete was also recorded.

Influence of Deep Cold Rolling and Low Plasticity Burnishing on Surface Hardness and Surface Roughness of AISI 4140 Steel

Deep cold rolling (DCR) and low plasticity burnishing (LPB) process are cold working processes, which easily produce a smooth and work-hardened surface by plastic deformation of surface irregularities. The present study focuses on the surface roughness and surface hardness aspects of AISI 4140 work material, using fractional factorial design of experiments. The assessment of the surface integrity aspects on work material was done, in order to identify the predominant factors amongst the selected parameters. They were then categorized in order of significance followed by setting the levels of the factors for minimizing surface roughness and/or maximizing surface hardness. In the present work, the influence of main process parameters (force, feed rate, number of tool passes/overruns, initial roughness of the work piece, ball material, ball diameter and lubricant used) on the surface roughness and the hardness of AISI 4140 steel were studied for both LPB and DCR process and the results are compared. It was observed that by using LPB process surface hardness has been improved by 167% and in DCR process surface hardness has been improved by 442%. It was also found that the force, ball diameter, number of tool passes and initial roughness of the workpiece are the most pronounced parameters, which has a significant effect on the work piece-s surface during deep cold rolling and low plasticity burnishing process.

Flexural Strength and Ductility Improvement of NSC beams

In order to calculate the flexural strength of normal-strength concrete (NSC) beams, the nonlinear actual concrete stress distribution within the compression zone is normally replaced by an equivalent rectangular stress block, with two coefficients of α and β to regulate the intensity and depth of the equivalent stress respectively. For NSC beams design, α and β are usually assumed constant as 0.85 and 0.80 in reinforced concrete (RC) codes. From an earlier investigation of the authors, α is not a constant but significantly affected by flexural strain gradient, and increases with the increasing of strain gradient till a maximum value. It indicates that larger concrete stress can be developed in flexure than that stipulated by design codes. As an extension and application of the authors- previous study, the modified equivalent concrete stress block is used here to produce a series of design charts showing the maximum design limits of flexural strength and ductility of singly- and doubly- NSC beams, through which both strength and ductility design limits are improved by taking into account strain gradient effect.

Computational Prediction of Complicated Atmospheric Motion for Spinning or non- Spinning Projectiles

A full six degrees of freedom (6-DOF) flight dynamics model is proposed for the accurate prediction of short and long-range trajectories of high spin and fin-stabilized projectiles via atmospheric flight to final impact point. The projectiles is assumed to be both rigid (non-flexible), and rotationally symmetric about its spin axis launched at low and high pitch angles. The mathematical model is based on the full equations of motion set up in the no-roll body reference frame and is integrated numerically from given initial conditions at the firing site. The projectiles maneuvering motion depends on the most significant force and moment variations, in addition to wind and gravity. The computational flight analysis takes into consideration the Mach number and total angle of attack effects by means of the variable aerodynamic coefficients. For the purposes of the present work, linear interpolation has been applied from the tabulated database of McCoy-s book. The developed computational method gives satisfactory agreement with published data of verified experiments and computational codes on atmospheric projectile trajectory analysis for various initial firing flight conditions.

Mechanical Behaviour Analysis of Polyester Polymer Mortars Modified with Recycled GFRP Waste Materials

In this study the effect of incorporation of recycled glass-fibre reinforced polymer (GFRP) waste materials, obtained by means of milling processes, on mechanical behaviour of polyester polymer mortars was assessed. For this purpose, different contents of recycled GFRP waste powder and fibres, with distinct size gradings, were incorporated into polyester based mortars as sand aggregates and filler replacements. Flexural and compressive loading capacities were evaluated and found better than unmodified polymer mortars. GFRP modified polyester based mortars also show a less brittle behaviour, with retention of some loading capacity after peak load. Obtained results highlight the high potential of recycled GFRP waste materials as efficient and sustainable reinforcement and admixture for polymer concrete and mortars composites, constituting an emergent waste management solution.

On the Numerical Simulation of Flow Past an Oscillating Circular Cylinder in a Circular Path: Oscillation Amplitude Effect

This paper presents results obtained from the numerical solution for the flow past an oscillating circular cylinder at Reynolds number of 200. The frequency of oscillation was fixed to the vortex shedding frequency from a fixed cylinder, f0, while the amplitudes of oscillations were varied from to 1.1a, where a represents the radius of the cylinder. The response of the flow through the fluid forces acting on the surface of the cylinder are investigated. The lock-on phenomenon is captured at low oscillation amplitudes.

Long-term Flexural Behavior of HSC Beams

This article presents the analysis of experimental values regarding cracking pattern, specific strains and deformability for reinforced high strength concrete beams. The beams have the concrete class C80/95 and a longitudinal reinforcement ratio of 2.01%, respectively 3.39%. The elements were subjected to flexure under static short-term and long-term loading. The experimental values are compared with calculation values using the design relationships according to Eurocode 2.

The Applicability of the Zipper Strut to Seismic Rehabilitation of Steel Structures

Chevron frames (Inverted-V-braced frames or Vbraced frames) have seismic disadvantages, such as not good exhibit force redistribution capability and compression brace buckles immediately. Researchers developed new design provisions on increasing both the ductility and lateral resistance of these structures in seismic areas. One of these new methods is adding zipper columns, as proposed by Khatib et al. (1988) [2]. Zipper columns are vertical members connecting the intersection points of the braces above the first floor. In this paper applicability of the suspended zipper system to Seismic Rehabilitation of Steel Structures is investigated. The models are 3-, 6-, 9-, and 12-story Inverted-V-braced frames. In this case, it is assumed that the structures must be rehabilitated. For rehabilitation of structures, zipper column is used. The result of researches showed that the suspended zipper system is effective in case of 3-, 6-, and 9-story Inverted-V-braced frames and it would increase lateral resistance of structure up to life safety level. But in case of high-rise buildings (such as 12 story frame), it doesn-t show good performance. For solving this problem, the braced bay can consist of small “units" over the height of the entire structure, which each of them is a zipper-braced bay with a few stories. By using this method the lateral resistance of 12 story Inverted-V-braced frames is increased up to safety life level.

Negative Temperature Dependence of a Gravity - A Reality

Temperature dependence of force of gravitation is one of the fundamental problems of physics. This problem has got special value in connection with that the general theory of relativity, supposing the weakest positive influence of a body temperature on its weight, actually rejects an opportunity of measurement of negative influence of temperature on gravity in laboratory conditions. Really, the recognition of negative temperature dependence of gravitation, for example, means basic impossibility of achievement of a singularity («a black hole») at a gravitational collapse. Laboratory experiments with exact weighing the heated up metal samples, indicating negative influence temperatures of bodies on their physical weight are described. Influence of mistakes of measurements is analyzed. Calculations of distribution of temperature in volume of the bar, agreed with experimental data of time dependence of weight of samples are executed. The physical substantiation of negative temperature dependence of weight of the bodies, based on correlation of acceleration at thermal movement of micro-particles of a body and its absolute temperature, are given.

Real Time Multi-Sensory Force Sensing Mat for Sports Biomechanics and Human Gait Analysis

This paper presents a real time force sensing instrument that is designed for human gait analysis purposes. It is capable of recording and monitoring ground reaction forces exerted by human foot during various activities such as walking, running and jumping in real time. In overall, force sensing mat mainly consists of three elements: the force sensing mat, signal conditioning circuit and data acquisition device. Force sensing mat is the mat that contains an array of force sensing elements. To control and process the incoming signal from the force sensing mat, Force-Logger and Force-Reloader are developed using National Instrument Labview. This paper describes the architecture of the force sensing mat, signal conditioning circuit and the real time streaming of the incoming data from the force sensing mat. Additionally, a preliminary experiment dataset is presented in this paper.

Seismic Analysis of a S-Curved Viaduct using Stick and Finite Element Models

Stick models are widely used in studying the behaviour of straight as well as skew bridges and viaducts subjected to earthquakes while carrying out preliminary studies. The application of such models to highly curved bridges continues to pose challenging problems. A viaduct proposed in the foothills of the Himalayas in Northern India is chosen for the study. It is having 8 simply supported spans @ 30 m c/c. It is doubly curved in horizontal plane with 20 m radius. It is inclined in vertical plane as well. The superstructure consists of a box section. Three models have been used: a conventional stick model, an improved stick model and a 3D finite element model. The improved stick model is employed by making use of body constraints in order to study its capabilities. The first 8 frequencies are about 9.71% away in the latter two models. Later the difference increases to 80% in 50th mode. The viaduct was subjected to all three components of the El Centro earthquake of May 1940. The numerical integration was carried out using the Hilber- Hughes-Taylor method as implemented in SAP2000. Axial forces and moments in the bridge piers as well as lateral displacements at the bearing levels are compared for the three models. The maximum difference in the axial forces and bending moments and displacements vary by 25% between the improved and finite element model. Whereas, the maximum difference in the axial forces, moments, and displacements in various sections vary by 35% between the improved stick model and equivalent straight stick model. The difference for torsional moment was as high as 75%. It is concluded that the stick model with body constraints to model the bearings and expansion joints is not desirable in very sharp S curved viaducts even for preliminary analysis. This model can be used only to determine first 10 frequency and mode shapes but not for member forces. A 3D finite element analysis must be carried out for meaningful results.

Design and Research of a New Kind Balance Adjusting System of Centrifuge

In order to make environmental test centrifuge balance automatically and accurately, reduce unbalance centrifugal force, balance adjusting system of centrifuge is designed. The new balance adjusting system comprises motor-reducer, timing belt, screw pair, slider-guideway and four rocker force sensors. According to information obtained by the four rocker force sensors, unbalanced value at both ends of the big arm is computed and heavy block is moved to achieve balance adjusting. In this paper, motor power and torque to move the heavy block is calculated. In full load running progress of centrifuge, the stress-strain of screw pair composed by adjusting nut and big arm are analyzed. A successful application of the balance adjusting system is also put forwarded. The results show that the balance adjusting system can satisfy balance require of environmental test centrifuge.

Microstructural and In-Vitro Characterization of Glass-Reinforced Hydroxyapatite Composites

Commercial hydroxyapatite (HA) was reinforced by adding 2, 5, and 10 wt % of 28.5%CaO-28.5%P2O5-38%Na2 O- 5%CaF2 based glass and then sintered. Although HA shows good biocompatibility with the human body, its applications are limited to non load-bearing areas and coatings due to its poor mechanical properties. These mechanical properties can be improved substantially with addition of glass ceramics by sintering. In this study, the effects of sintering hydroxyapatite with above specified phosphate glass additions are quantified. Each composition was sintered over a range of temperatures. Scanning electron microscopy and x-ray diffraction were used to characterize the microstructure and phases of the composites. The density, microhardness, and compressive strength were measured using Archimedes Principle, Vickers Microhardness Tester (at 0.98 N), and Instron Universal Testing Machine (cross speed of 0.5 mm/min) respectively. These results were used to indicate which composition provided suitable material for use in hard tissue replacement. Composites containing 10 wt % glass additions formed dense HA/TCP (tricalcium phosphate) composite materials possessing good compressive strength and hardness than HA. In-vitro bioactivity was assessed by evaluating changes in pH and Ca2+ ion concentration of SBF-simulated body fluid on immersion of these composites in it for two weeks.

Adaptive PID Controller based on Reinforcement Learning for Wind Turbine Control

A self tuning PID control strategy using reinforcement learning is proposed in this paper to deal with the control of wind energy conversion systems (WECS). Actor-Critic learning is used to tune PID parameters in an adaptive way by taking advantage of the model-free and on-line learning properties of reinforcement learning effectively. In order to reduce the demand of storage space and to improve the learning efficiency, a single RBF neural network is used to approximate the policy function of Actor and the value function of Critic simultaneously. The inputs of RBF network are the system error, as well as the first and the second-order differences of error. The Actor can realize the mapping from the system state to PID parameters, while the Critic evaluates the outputs of the Actor and produces TD error. Based on TD error performance index and gradient descent method, the updating rules of RBF kernel function and network weights were given. Simulation results show that the proposed controller is efficient for WECS and it is perfectly adaptable and strongly robust, which is better than that of a conventional PID controller.

Preparation and Bioactivity Evaluation of Bone like Hydroxyapatite - Bioglass Composite

In this study, hydroxyapatite (HA) composites are prepared on addition of 30%CaO-30%P2O5-40%Na2 O based glass to pure HA, in proportion of 2, 5, and 10 wt %. Each composition was sintered over a range of temperatures. The quantitative phase analysis was carried out using XRD and the microstructures were studied using SEM. The density, microhardness, and compressive strength have shown increase with the increasing amount of glass addition. The resulting composites have chemical compositions that are similar to the inorganic constituent of the mineral part of bone, and constitutes trace elements like Na. X-ray diffraction showed no decomposition of HA to secondary phases, however, the glass reinforced-HA composites contained a HA phase and variable amounts of tricalcium phosphate phase, depending on the amount of bioglass added. The HA-composite material exhibited higher compressive strength compared to sintered HA. The HA composite reinforced with 10 wt % bioglass showed highest bioactivity level.

Human Induced Dynamic Loading on Stairs

Based on experimental data using accelerometry technology there was developed an analytical model that approximates human induced ground reaction forces in vertical, longitudinal and lateral directions ascending and descending the stairs. Proposed dynamic loading factors and corresponding phase shifts for the first five harmonics of continuous walking force history in case of stair ascend and descend. Into account is taken imperfectness of individual footfall forcing functions, differences between continuous walking force histories among individuals. There is proposed mean synthetic continuous walking force history that can be used in numerical simulations of human movement on the stairs.

Comparative Study of the Static and Dynamic Analysis of Multi-Storey Irregular Building

As the world move to the accomplishment of Performance Based Engineering philosophies in seismic design of Civil Engineering structures, new seismic design provisions require Structural Engineers to perform both static and dynamic analysis for the design of structures. While Linear Equivalent Static Analysis is performed for regular buildings up to 90m height in zone I and II, Dynamic Analysis should be performed for regular and irregular buildings in zone IV and V. Dynamic Analysis can take the form of a dynamic Time History Analysis or a linear Response Spectrum Analysis. In present study, Multi-storey irregular buildings with 20 stories have been modeled using software packages ETABS and SAP 2000 v.15 for seismic zone V in India. This paper also deals with the effect of the variation of the building height on the structural response of the shear wall building. Dynamic responses of building under actual earthquakes, EL-CENTRO 1949 and CHI-CHI Taiwan 1999 have been investigated. This paper highlights the accuracy and exactness of Time History analysis in comparison with the most commonly adopted Response Spectrum Analysis and Equivalent Static Analysis.

Mathematical Modeling Experimental Approach of the Friction on the Tool-Chip Interface of Multicoated Carbide Turning Inserts

The importance of machining process in today-s industry requires the establishment of more practical approaches to clearly represent the intimate and severe contact on the tool-chipworkpiece interfaces. Mathematical models are developed using the measured force signals to relate each of the tool-chip friction components on the rake face to the operating cutting parameters in rough turning operation using multilayers coated carbide inserts. Nonlinear modeling proved to have high capability to detect the nonlinear functional variability embedded in the experimental data. While feedrate is found to be the most influential parameter on the friction coefficient and its related force components, both cutting speed and depth of cut are found to have slight influence. Greater deformed chip thickness is found to lower the value of friction coefficient as the sliding length on the tool-chip interface is reduced.