Identification of Single Nucleotide Polymorphism in 5'-UTR of CYP11B1 Gene in Pakistani Sahiwal Cattle

A major goal in animal genetics is to understand the role of common genetic variants in diseases susceptibility and production traits. Sahiwal cattle can be considered as a global animal genetic resource due to its relatively high milk producing ability, resistance against tropical diseases and heat tolerant. CYP11B1 gene provides instructions for making a mitochondrial enzyme called steroid 11-beta-hydroxylase. It catalyzes the 11deoxy-cortisol to cortisol and 11deoxycorticosterone to corticosterone in cattle. The bovine CYP11B1 gene is positioned on BTA14q12 comprises of eight introns and nine exons and protein is associated with mitochondrial epithelium. The present study was aimed to identify the single-nucleotide polymorphisms in CYP11B1 gene in Sahiwal cattle breed of Pakistan. Four polymorphic sites were identified in exon one of CYP11B1 gene through sequencing approach. Significant finding was the incidence of the C→T polymorphism in 5'-UTR, causing amino acid substitution from alanine to valine (A30V) in Sahiwal cattle breed. That Ala/Val polymorphism may serve as a powerful genetic tool for the development of DNA markers that can be used for the particular traits for different local cattle breeds.

Study of Effective Moisture Diffusivity of Oak Acorn

The purpose of present work was to study the drying kinetics of whole acorn and its kernel at different drying air temperatures and their effective moisture diffusivity. The results indicated that the drying time of whole acorn was 442, 206 and 188 min at the air temperature of 65, 75 and 85ºC, respectively. At the same temperatures, the drying time of kernel was 131, 56 and 76min. The results showed that the effect of drying air temperature increasing on the drying time reduction could not be significant on acorn drying at all conditions. The effective moisture diffusivity of whole acorn and kernel increased with increasing air temperature from 65 to 75ºC. However more air temperature increasing, led to decreasing this property of acorn kernel. The critical temperature of acorn drying was about 75°C in which acorn kernel had the highest effective moisture diffusivity.

Analysis of Drying Kinetics of a Slurry Droplet in the Falling Rate Period of Spray Drying

The heat and mass transfer was investigated during the falling rate period of spray drying of a slurry droplet. The effect of the porosity of crust layer formed from primary particles during liquid evaporation was studied numerically using the developed mathematical model which takes into account the heat and mass transfer in the core and crust regions, the movement of the evaporation interface, and the external heat and mass transfer between the drying air and the droplet surface. It was confirmed that the heat transfer through the crust layer was more intense in the case of the dense droplet than the loose one due to the enhanced thermal conduction resulting in the higher average droplet temperature. The mass transfer was facilitated in the crust layer of loose droplet owing to the large pore space available for diffusion of water vapor from the evaporation interface to the outer droplet surface. The longer drying time is required for the droplet of high porosity to reach the final moisture content than that for the dense one due to the larger amount of water to be evaporated during the falling rate.

GIC-Based Adsorbents for Wastewater Treatment through Adsorption and Electrochemical-Regeneration

Intercalation imparts interesting features to the host graphite material. Two different types of intercalated compounds called (GIC-bisulphate or Nyex 1000 and GIC-nitrate or Nyex 3000) were tested for their adsorption capacity and ability to undergo electrochemical regeneration. It was found that Nyex 3000 showed comparatively slow kinetics along with reduced adsorption capacity to one half for acid violet 17 as adsorbate. Acid violet 17 was selected as model organic pollutant for evaluating comparative performance of said adsorbents. Both adsorbent materials showed 100% regeneration efficiency as achieved by passing a charge of 36 C g-1 at a current density of 12 mA cm-2 and a treatment time of 60 min.  

Measuring Creativity in Die Products for Technological Education

Creative design requires new approaches to assessment in vocational and technological education. To date, there has been little discussion on instruments used to evaluate dies produced by students in vocational and technological education. Developing a generic instrument has been very difficult due to the diversity of creative domains, the specificity of content, and the subjectivity involved in judgment. This paper presents an instrument for measuring the creativity in the design of products by expanding the Consensual Assessment Technique (CAT). The content-based scale was evaluated for content validity by 5 experts. The scale comprises 5 criteria: originality; practicability; precision; aesthetics; and exchangeability. Nine experts were invited to evaluate the dies produced by 38 college students who enrolled in a Product Design and Development course. To further explore the degree of rater agreement, inter-rater reliability was calculated for each dimension using Kendall's coefficient of concordance test. The inter-judge reliability scores achieved significance, with coefficients ranging from 0.53 to 0.71.

In-situ Chemical Oxidation of Residual TCE by Permanganate in Epikarst

In-situ chemical oxidation (ISCO) has been widely used for source zone remediation of Dense Nonaqueous Phase Liquids (DNAPLs) in subsurface environments. DNAPL source zones for karst aquifers are generally located in epikarst where the DNAPL mass is trapped either in karst soil or at the regolith contact with carbonate bedrock. This study aims to investigate the performance of oxidation of residual trichloroethylene found in such environments by potassium permanganate. Batch and flow cell experiments were conducted to determine the kinetics and the mass removal rate of TCE. pH change, Cl production, TCE and MnO4 destruction were monitored routinely during experiments. Nonreactive tracer tests were also conducted prior and after the oxidation process to determine the influence of oxidation on flow conditions. The results show that oxidant consumption rate of the calcareous epikarst soil was significant and the oxidant demand was determined to be 20 g KMnO4/kg soil. Oxidation rate of residual TCE (1.26x10-3 s-1) was faster than the oxidant consumption rate of the soil (2.54 - 2.92x10-4 s-1) at only high oxidant concentrations (> 40 mM KMnO4). Half life of TCE oxidation ranged from 7.9 to 10.7 min. Although highly significant fraction of residual TCE mass in the system was destroyed by permanganate oxidation, TCE concentration in the effluent remained above its MCL. Flow interruption tests indicate that efficiency of ISCO was limited by the rate of TCE dissolution and the rate-limited desorption of TCE. The residence time and the initial concentration of the oxidant in the source zone also controlled the efficiency of ISCO in epikarst.

New Simultaneous High Performance Liquid Chromatographic Method for Determination of NSAIDs and Opioid Analgesics in Advanced Drug Delivery Systems and Human Plasma

A new and cost effective RP-HPLC method was developed and validated for simultaneous analysis of non steroidal anti inflammatory dugs Diclofenac sodium (DFS), Flurbiprofen (FLP) and an opioid analgesic Tramadol (TMD) in advanced drug delivery systems (Liposome and Microcapsules), marketed brands and human plasma. Isocratic system was employed for the flow of mobile phase consisting of 10 mM sodium dihydrogen phosphate buffer and acetonitrile in molar ratio of 67: 33 with adjusted pH of 3.2. The stationary phase was hypersil ODS column (C18, 250×4.6 mm i.d., 5 μm) with controlled temperature of 30 C°. DFS in liposomes, microcapsules and marketed drug products was determined in range of 99.76-99.84%. FLP and TMD in microcapsules and brands formulation were 99.78 - 99.94 % and 99.80 - 99.82 %, respectively. Single step liquid-liquid extraction procedure using combination of acetonitrile and trichloroacetic acid (TCA) as protein precipitating agent was employed. The detection limits (at S/N ratio 3) of quality control solutions and plasma samples were 10, 20, and 20 ng/ml for DFS, FLP and TMD, respectively. The Assay was acceptable in linear dynamic range. All other validation parameters were found in limits of FDA and ICH method validation guidelines. The proposed method is sensitive, accurate and precise and could be applicable for routine analysis in pharmaceutical industry as well as in human plasma samples for bioequivalence and pharmacokinetics studies.

QCM-D Study of E-casein Adsorption on Bimodal PEG Brushes

Adsorption of proteins onto a solid surface is believed to be the initial and controlling step in biofouling. A better knowledge of the fouling process can be obtained by controlling the formation of the first protein layer at a solid surface. A number of methods have been investigated to inhibit adsorption of proteins. In this study, the adsorption kinetics of

Description of Kinetics of Propane Fragmentation with a Support of Ab Initio Simulation

Using ab initio theoretical calculations, we present analysis of fragmentation process. The analysis is performed in two steps. The first step is calculation of fragmentation energies by ab initio calculations. The second step is application of the energies to kinetic description of process. The energies of fragments are presented in this paper. The kinetics of fragmentation process can be described by numerical models. The method for kinetic analysis is described in this paper. The result - composition of fragmentation products - will be calculated in future. The results from model can be compared to the concentrations of fragments from mass spectrum.

Global Kinetics of Direct Dimethyl Ether Synthesis Process from Syngas in Slurry Reactor over a Novel Cu-Zn-Al-Zr Slurry Catalyst

The direct synthesis process of dimethyl ether (DME) from syngas in slurry reactors is considered to be promising because of its advantages in caloric transfer. In this paper, the influences of operating conditions (temperature, pressure and weight hourly space velocity) on the conversion of CO, selectivity of DME and methanol were studied in a stirred autoclave over Cu-Zn-Al-Zr slurry catalyst, which is far more suitable to liquid phase dimethyl ether synthesis process than bifunctional catalyst commercially. A Langmuir- Hinshelwood mechanism type global kinetics model for liquid phase DME direct synthesis based on methanol synthesis models and a methanol dehydration model has been investigated by fitting our experimental data. The model parameters were estimated with MATLAB program based on general Genetic Algorithms and Levenberg-Marquardt method, which is suitably fitting experimental data and its reliability was verified by statistical test and residual error analysis.

Influence of Cell-free Proteins in the Nucleation of CaCO3 Crystals in Calcified Endoskeleton

Calcite aCalcite and aragonite are the two common polymorphs of CaCO3 observed as biominerals. It is universal that the sea water contents a high Mg2+ (50mM) relative to Ca2+ (10mM). In vivo crystallization, Mg2+ inhibits calcite formation. For this reason, stony corals skeleton may be formed only aragonite crystals in the biocalcification. It is special in case of soft corals of which formed only calcite crystal; however, this interesting phenomenon, still uncharacterized in the marine environment, has been explored in this study using newly purified cell-free proteins isolated from the endoskeletal sclerites of soft coral. By recording the decline of pH in vitro, the control of CaCO3 nucleation and crystal growth by the cellfree proteins was revealed. Using Atomic Force Microscope, here we find that these endoskeletal cell-free proteins significantly design the morphological shape in the molecular-scale kinetics of crystal formation and those proteins act as surfactants to promote ion attachment at calcite steps.nd aragonite are the two common polymorphs of CaCO3 observed as biominerals. It is universal that the sea water contents a high Mg2+ (50mM) relative to Ca2+ (10mM). In vivo crystallization, Mg2+ inhibits calcite formation. For this reason, stony corals skeleton may be formed only aragonite crystals in the biocalcification. It is special in case of soft corals of which formed only calcite crystal; however, this interesting phenomenon, still uncharacterized in the marine environment, has been explored in this study using newly purified cell-free proteins isolated from the endoskeletal sclerites of soft coral. By recording the decline of pH in vitro, the control of CaCO3 nucleation and crystal growth by the cell-free proteins was revealed. Using Atomic Force Microscope, here we find that these endoskeletal cell-free proteins significantly design the morphological shape in the molecular-scale kinetics of crystal formation and those proteins act as surfactants to promote ion attachment at calcite steps. KeywordsBiomineralization, Calcite, Cell-free protein, Soft coral

Microalbuminuria in Essential Hypertension

Essential hypertension (HTN) usually clusters with other cardiovascular risk factors such as age, overweight, diabetes, insulin resistance and dyslipidemia. The target organ damage (TOD) such as left ventricular hypertrophy, microalbuminuria (MA), acute coronary syndrome (ACS), stroke and cognitive dysfunction takes place early in course of hypertension. Though the prevalence of hypertension is high in India, the relationship between microalbuminuria and target organ damage in hypertension is not well studied. This study aim at detecting MA in essential hypertension and its relation to severity of HTN, duration of HTN, body mass index (BMI), age and TOD such as HTN retinopathy and acute coronary syndrome The present study was done in 100 patients of essential hypertension non diabetics admitted to B.L.D.E.University-s Sri B.M.Patil Medical College, Bijapur, from October 2008 to April 2011. The patients underwent detailed history and clinical examination. Early morning 5 ml of urine sample was collected & MA was estimated by immunoturbidometry method. The relationship of MA with the duration & severity of HTN, BMI, age, sex and TOD's like hypertensive retinopathy, ACS was assessed by univariate analysis. The prevalence of MA in this study was found to be 63 %. In that 42% were male & 21% were female. In this study a significant association between MA and the duration of hypertension (p = 0.036) & (OR =0.438). Longer the duration of hypertension, more possibility of microalbumin in urine. Also there was a significant association between severity of hypertension and MA (p=0.045) and (OR=0.093). MA was positive in 50 (79.4%) patients out of 63, whose blood pressure was >160/100 mm Hg. In this study a significant association between MA and the grades of hypertensive retinopathy (p =0.011) and acute coronary syndrome (p = 0.041) (OR =2.805). Gender and BMI did not pose high risk for MA in this study.The prevalence of MA in essential hypertension is high in this part of the community and MA will increase the risk of developing target organ damage.Early screening of patients with essential hypertension for MA and aggressive management of positive cases might reduce the burden of chronic kidney diseases and cardiovascular diseases in the community.

Removal of Iron from Groundwater by Sulfide Precipitation

Iron in groundwater is one of the problems that render the water unsuitable for drinking. The concentration above 0.3 mg/L is common in groundwater. The conventional method of removal is by precipitation under oxic condition. In this study, iron removal under anaerobic conditions was examined by batch experiment as a main purpose. The process involved by purging of groundwater samples with H2S to form iron sulfide. Removal up to 83% for 1 mg/L iron solution was achieved. The removal efficiency dropped to 82% and 75% for the higher initial iron concentrations 3.55 and 5.01 mg/L, respectively. The average residual sulfide concentration in water after the process was 25*g/L. The Eh level during the process was -272 mV. The removal process was found to follow the first order reaction with average rate constant of 4.52 x 10-3. The half-life for the concentrations to reduce from initial values was 157 minutes.

Adsorptive Removal of Vapors of Toxic Sulfur Compounds using Activated Carbons

Adsorption of CS2 vapors has been studied on different types of activated carbons obtained from different source raw materials. The activated carbons have different surface areas and are associated with varying amounts of the carbon-oxygen surface groups. The adsorption of CS2 vapors is not directly related to surface area, but is considerably influenced by the presence of carbonoxygen surface groups. The adsorption decreases on increasing the amount of carbon-oxygen surface groups on oxidation and increases when these surface groups are eliminated on degassing. The adsorption is maximum in case of the 950°-degassed carbon sample which is almost completely free of any associated oxygen. The kinetic data as analysed by Empirical diffusion model and Linear driving force mass transfer model indicate that the adsorption does not involve Fickian diffusion but may be considered as a pseudo first order mass transfer process. The activation energy of adsorption and isosteric enthalpies of adsorption indicate that the adsorption does not involve interaction between CS2 and carbon-oxygen surface groups, but hydrophobic interactions between CS2 and C-C atoms in the carbon lattice.

Antioxidant Components of Fumaria Species(Papaveraceae)

The genus Fumaria L. (Papaveraceae) in Iran comprises 8 species with a vast medicinal use in Asian folk medicine. These herbs are considered to be useful in the treatment of gastrointestinal disease and skin disorders. Antioxidant activities of alkaloids and phenolic extracts of these species had been studied previously. These species are: F. officinalis, F. parviflora, F. asepala, F. densiflora, F. schleicheri, F. vaillantii and F. indica. More than 50 populations of Fumaria species were sampled from nature. In this study different fatty acids are extracted. Their picks were recorded by GC technique. This species contain some kind of fatty acids with antioxidant effects. A part of these lipids are phospholipids. As these are unsaturated fatty acids they may have industrial use as natural additive to cosmetics, dermal and oral medicines. The presences of different materials are discussed. Our studies for antioxidant effects of these substances are continued.

Separation of Manganese and Cadmium from Cobalt Electrolyte Solution by Solvent Extraction

Impurity metals such as manganese and cadmium from high-tenor cobalt electrolyte solution were selectively removed by solvent extraction method using Co-D2EHPA after converting the functional group of D2EHPA with Co2+ ions. The process parameters such as pH, organic concentration, O/A ratio, kinetics etc. were investigated and the experiments were conducted by batch tests in the laboratory bench scale. Results showed that a significant amount of manganese and cadmium can be extracted using Co-D2EHPA for the optimum processing of cobalt electrolyte solution at equilibrium pH about 3.5. The McCabe-Thiele diagram, constructed from the extraction studies showed that 100% impurities can be extracted through four stages for manganese and three stages for cadmium using O/A ratio of 0.65 and 1.0, respectively. From the stripping study, it was found that 100% manganese and cadmium can be stripped from the loaded organic using 0.4 M H2SO4 in a single contact. The loading capacity of Co-D2EHPA by manganese and cadmium were also investigated with different O/A ratio as well as with number of stages of contact of aqueous and organic phases. Valuable information was obtained for the designing of an impurities removal process for the production of pure cobalt with less trouble in the electrowinning circuit.

Static Recrystallization Behavior of Mg Alloy Single Crystals

Single crystals of Magnesium alloys such as pure Mg, Mg-1Zn-0.5Y, Mg-0.1Y, and Mg-0.1Ce alloys were successfully fabricated in this study by employing the modified Bridgman method. To determine the exact orientation of crystals, pole figure measurement using X-ray diffraction were carried out on each single crystal. Hardness and compression tests were conducted followed by subsequent recrysatllization annealing. Recrystallization kinetics of Mg alloy single crystals has been investigated. Fabricated single crystals were cut into rectangular shaped specimen and solution treated at 400oC for 24 hrs, and then deformed in compression mode by 30% reduction. Annealing treatment for recrystallization has been conducted on these cold-rolled plates at temperatures of 300oC for various times from 1 to 20 mins. The microstructure observation and hardness measurement conducted on the recrystallized specimens revealed that static recrystallization of ternary alloy single crystal was very slow, while recrystallization behavior of binary alloy single crystals appeared to be very fast.

Critical Assessment of Scoring Schemes for Protein-Protein Docking Predictions

Protein-protein interactions (PPI) play a crucial role in many biological processes such as cell signalling, transcription, translation, replication, signal transduction, and drug targeting, etc. Structural information about protein-protein interaction is essential for understanding the molecular mechanisms of these processes. Structures of protein-protein complexes are still difficult to obtain by biophysical methods such as NMR and X-ray crystallography, and therefore protein-protein docking computation is considered an important approach for understanding protein-protein interactions. However, reliable prediction of the protein-protein complexes is still under way. In the past decades, several grid-based docking algorithms based on the Katchalski-Katzir scoring scheme were developed, e.g., FTDock, ZDOCK, HADDOCK, RosettaDock, HEX, etc. However, the success rate of protein-protein docking prediction is still far from ideal. In this work, we first propose a more practical measure for evaluating the success of protein-protein docking predictions,the rate of first success (RFS), which is similar to the concept of mean first passage time (MFPT). Accordingly, we have assessed the ZDOCK bound and unbound benchmarks 2.0 and 3.0. We also createda new benchmark set for protein-protein docking predictions, in which the complexes have experimentally determined binding affinity data. We performed free energy calculation based on the solution of non-linear Poisson-Boltzmann equation (nlPBE) to improve the binding mode prediction. We used the well-studied thebarnase-barstarsystem to validate the parameters for free energy calculations. Besides,thenlPBE-based free energy calculations were conducted for the badly predicted cases by ZDOCK and ZRANK. We found that direct molecular mechanics energetics cannot be used to discriminate the native binding pose from the decoys.Our results indicate that nlPBE-based calculations appeared to be one of the promising approaches for improving the success rate of binding pose predictions.

Pomelo Peel: Agricultural Waste for Biosorption of Cadmium Ions from Aqueous Solutions

The ability of pomelo peel, a natural biosorbent, to remove Cd(II) ions from aqueous solution by biosorption was investigated. The experiments were carried out by batch method at 25 °C. The influence of solution pH, initial cadmium ion concentrations and contact times were evaluated. Cadmium ion removal increased significantly as the pH of the solution increased from pH 1 to pH 5. At pH 5, the cadmium ion removal reached a maximum value. The equilibrium process was described well by the Langmuir isotherm model, with a maximum biosorption capacity of 21.83 mg/g. The biosorption was relatively quick, (approx. 20 min). Biosorption kinetics followed a pseudo-second-order model. The result showed that pomelo peel was effective as a biosorbent for removing cadmium ions from aqueous solution. It is a low cost material that shows potential to be applied in wastewater technology for remediation of heavy metal contamination.

The Effect of Loperamide and Fentanyl on the Distribution Kinetics of Verapamil in the Lung and Brain in Sprague Dawley Rats

Verapamil has been shown to inhibit fentanyl uptake in vitro and is a potent P-glycoprotein inhibitor. Tissue partitioning of loperamide, a commercially available opioid, is closely controlled by the P-gp efflux transporter. The following studies were designed to evaluate the effect of opioids on verapamil partitioning in the lung and brain, in vivo. Opioid (fentanyl or loperamide) was administered by intravenous infusion to Sprague Dawley rats alone or in combination with verapamil and plasma, with lung and brain tissues were collected at 1, 5, 6, 8, 10 and 60 minutes. Drug dispositions were modeled by recirculatory pharmacokinetic models. Fentanyl slightly increased the verapamil lung (PL) partition coefficient yet decreased the brain (PB) partition coefficient. Furthermore, loperamide significantly increased PLand PB. Fentanyl reduced the verapamil volume of distribution (V1) and verapamil elimination clearance (ClE). Fentanyl decreased verapamil brain partitioning, yet increased verapamil lung partitioning. Also, loperamide increased lung and brain partitioning in vivo. These results suggest that verapamil and fentanyl may be substrates of an unidentified inward transporter in brain tissue and confirm that verapamil and loperamide are substrates of the efflux transporter P-gp.