Decision Support System for Flood Crisis Management using Artificial Neural Network

This paper presents an alternate approach that uses artificial neural network to simulate the flood level dynamics in a river basin. The algorithm was developed in a decision support system environment in order to enable users to process the data. The decision support system is found to be useful due to its interactive nature, flexibility in approach and evolving graphical feature and can be adopted for any similar situation to predict the flood level. The main data processing includes the gauging station selection, input generation, lead-time selection/generation, and length of prediction. This program enables users to process the flood level data, to train/test the model using various inputs and to visualize results. The program code consists of a set of files, which can as well be modified to match other purposes. This program may also serve as a tool for real-time flood monitoring and process control. The running results indicate that the decision support system applied to the flood level seems to have reached encouraging results for the river basin under examination. The comparison of the model predictions with the observed data was satisfactory, where the model is able to forecast the flood level up to 5 hours in advance with reasonable prediction accuracy. Finally, this program may also serve as a tool for real-time flood monitoring and process control.

Simulation and Statistical Analysis of Motion Behavior of a Single Rockfall

The impact force of a rockfall is mainly determined by its moving behavior and velocity, which are contingent on the rock shape, slope gradient, height, and surface roughness of the moving path. It is essential to precisely calculate the moving path of the rockfall in order to effectively minimize and prevent damages caused by the rockfall. By applying the Colorado Rockfall Simulation Program (CRSP) program as the analysis tool, this research studies the influence of three shapes of rock (spherical, cylindrical and discoidal) and surface roughness on the moving path of a single rockfall. As revealed in the analysis, in addition to the slope gradient, the geometry of the falling rock and joint roughness coefficient ( JRC ) of the slope are the main factors affecting the moving behavior of a rockfall. On a single flat slope, both the rock-s bounce height and moving velocity increase as the surface gradient increases, with a critical gradient value of 1:m = 1 . Bouncing behavior and faster moving velocity occur more easily when the rock geometry is more oval. A flat piece tends to cause sliding behavior and is easily influenced by the change of surface undulation. When JRC

Environmental Impact Assessment of Gotv and Hydro-Electric Dam on the Karoon River Using ICOLD Technique

Today Environmental Impact Assessment (EIA) is known as one of the most important tools for decision makers in the construction of civil and industrial projects towards sustainable development. In the past, projects were evaluated based on cost and benefit analysis regardless of the physical and biological environmental effects and its socio-economical impacts. According to the Department of Environment (DOE) of Iran's regulations, the construction of hydroelectric dams is an activity that requires an EIA report. In this paper the environmental impact assessment of the Gotvand hydro-electrical dam has been evaluated in the three environment elements, biological, Physical-chemical and cultural units. This dam is one of the largest dams in Iran with a volume of 4500 MCM and is going to be the last dam on the Karoon River in the south of Iran. In this paper the ICOLD (International Commission on Large Dams) technique was employed for the environmental impact assessment of the dam. The research includes all socio economical and environmental effects of the dam during the construction and operation of the hydro electric dam and Environmental management, monitoring and mitigation of negative impacts were analyzed. In this project the results led to using some techniques to protect the destructive impacts on biological aspects beside the effective long time period impacts on the biological aspects. The impacts on physical aspects are temporary and negative commonly that could be restored and rehabilitated in natural process in the long time in operation period.

Application of Generalized Stochastic Petri Nets(GSPN) in Modeling and Evaluating a Resource Sharing Flexible Manufacturing System

In most study fields, a phenomenon may not be studied directly but it will be examined indirectly by phenomenon model. Making an accurate model of system, there is attained new information from modeled phenomenon without any charge, danger, etc... there have been developed more solutions for describing and analyzing the recent complicated systems but few of them have analyzed the performance in the range of system description. Petri nets are of limited solutions which may make such union. Petri nets are being applied in problems related to modeling and designing the systems. Theory of Petri nets allow a system to model mathematically by a Petri net and analyzing the Petri net can then determine main information of modeled system-s structure and dynamic. This information can be used for assessing the performance of systems and suggesting corrections in the system. In this paper, beside the introduction of Petri nets, a real case study will be studied in order to show the application of generalized stochastic Petri nets in modeling a resource sharing production system and evaluating the efficiency of its machines and robots. The modeling tool used here is SHARP software which calculates specific indicators helping to make decision.

Challenges of Implementing Urban Master Plans: The Lahore Experience

Master plan is a tool to guide and manage the growth of cities in a planned manner. The soul of a master plan lies in its implementation framework. If not implemented, people are trapped in a mess of urban problems and laissez-faire development having serious long term repercussions. Unfortunately, Master Plans prepared for several major cities of Pakistan could not be fully implemented due to host of reasons and Lahore is no exception. Being the second largest city of Pakistan with a population of over 7 million people, Lahore holds the distinction that the first ever Master Plan in the country was prepared for this city in 1966. Recently in 2004, a new plan titled `Integrated Master Plan for Lahore-2021- has been approved for implementation. This paper provides a comprehensive account of the weaknesses and constraints in the plan preparation process and implementation strategies of Master Plans prepared for Lahore. It also critically reviews the new Master Plan particularly with respect to the proposed implementation framework. The paper discusses the prospects and pre-conditions for successful implementation of the new Plan in the light of historic analysis, interviews with stakeholders and the new institutional context under the devolution plan.

Asymptotic Stability of Input-saturated System with Linear-growth-bound Disturbances via Variable Structure Control: An LMI Approach

Variable Structure Control (VSC) is one of the most useful tools handling the practical system with uncertainties and disturbances. Up to now, unfortunately, not enough studies on the input-saturated system with linear-growth-bound disturbances via VSC have been presented. Therefore, this paper proposes an asymp¬totic stability condition for the system via VSC. The designed VSC controller consists of two control parts. The linear control part plays a role in stabilizing the system, and simultaneously, the nonlinear control part in rejecting the linear-growth-bound disturbances perfectly. All conditions derived in this paper are expressed with Linear Matrices Inequalities (LMIs), which can be easily solved with an LMI toolbox in MATLAB.

An Interactive Web-based Simulation Tool for Surgical Thread

Interactive web-based computer simulations are needed by the medical community to replicate the experience of surgical procedures as closely and realistically as possible without the need to practice on corpses, animals and/or plastic models. In this paper, we offer a review on current state of the research on simulations of surgical threads, identify future needs and present our proposed plans to meet them. Our goal is to create a physics-based simulator, which will predict the behavior of surgical thread when subjected to conditions commonly encountered during surgery. To that end, we will i) develop three dimensional finite element models based on the Cosserat theory of elasticity ii) test and feedback results with the medical community and iii) develop a web-based user interface to run/command our simulator and visualize the results. The impacts of our research are that i) it will contribute to the development of a new generation of training for medical school students and ii) the simulator will be useful to expert surgeons in developing new, better and less risky procedures.

Model Based Monitoring Using Integrated Data Validation, Simulation and Parameter Estimation

Efficient and safe plant operation can only be achieved if the operators are able to monitor all key process parameters. Instrumentation is used to measure many process variables, like temperatures, pressures, flow rates, compositions or other product properties. Therefore Performance monitoring is a suitable tool for operators. In this paper, we integrate rigorous simulation model, data reconciliation and parameter estimation to monitor process equipments and determine key performance indicator (KPI) of them. The applied method here has been implemented in two case studies.

Mapping Soil Fertility at Different Scales to Support Sustainable Brazilian Agriculture

Most agricultural crops cultivated in Brazil are highly nutrient demanding. Brazilian soils are generally acidic with low base saturation and available nutrients. Demand for fertilizer application has increased because the national agricultural sector expansion. To improve productivity without environmental impact, there is the need for the utilization of novel procedures and techniques to optimize fertilizer application. This includes the digital soil mapping and GIS application applied to mapping in different scales. This paper is based on research, realized during 2005 to 2010 by Brazilian Corporation for Agricultural Research (EMBRAPA) and its partners. The purpose was to map soil fertility in national and regional scales. A soil profile data set in national scale (1:5,000,000) was constructed from the soil archives of Embrapa Soils, Rio de Janeiro and in the regional scale (1:250,000) from COMIGO Cooperative soil data set, Rio Verde, Brazil. The mapping was doing using ArcGIS 9.1 tools from ESRI.

Parallel and Distributed Mining of Association Rule on Knowledge Grid

In Virtual organization, Knowledge Discovery (KD) service contains distributed data resources and computing grid nodes. Computational grid is integrated with data grid to form Knowledge Grid, which implements Apriori algorithm for mining association rule on grid network. This paper describes development of parallel and distributed version of Apriori algorithm on Globus Toolkit using Message Passing Interface extended with Grid Services (MPICHG2). The creation of Knowledge Grid on top of data and computational grid is to support decision making in real time applications. In this paper, the case study describes design and implementation of local and global mining of frequent item sets. The experiments were conducted on different configurations of grid network and computation time was recorded for each operation. We analyzed our result with various grid configurations and it shows speedup of computation time is almost superlinear.

Proposing a Conceptual Model of Customer Knowledge Management: A Study of CKM Tools in British Dotcoms

Although current competitive challenges induced by today-s digital economy place their main emphasis on organizational knowledge, customer knowledge has been overlooked. On the other hand, the business community has finally begun to realize the important role customer knowledge can play in the organizational boundaries of the corporate arena. As a result, there is an emerging market for the tools and utilities whose objective is to provide the intelligence for knowledge sharing between the businesses and their customers. In this paper, we present a conceptual model of customer knowledge management by identifying and analyzing the existing tools in the market. The focus will be upon the emerging British dotcom industry whose customer based B2C behavior has been an influential part of the knowledge based intelligence tools in existence today.

Instructional Design Using the Virtual Ecological Pond for Science Education in Elementary Schools

Ecological ponds can be a good teaching tool for science teachers, but they must be built and maintained properly to provide students with a safe and suitable learning environment. Hence, many schools do not have the ability to build an ecological pond. This study used virtual reality technology to develop a webbased virtual ecological pond. Supported by situated learning theory and the instructional design of “Aquatic Life" learning unit, elementary school students can actively explore in the virtual ecological pond to observe aquatic animals and plants and learn about the concept of ecological conservation. A teaching experiment was conducted to investigate the learning effectiveness and practicability of this instructional design, and the results showed that students improved a great deal in learning about aquatic life. They found the virtual ecological pond interesting, easy to operate and helpful to understanding the aquatic ecological system. Therefore, it is useful in elementary science education.

Student Satisfaction Data for Work Based Learners

This paper aims to describe how student satisfaction is measured for work-based learners as these are non-traditional learners, conducting academic learning in the workplace, typically their curricula have a high degree of negotiation, and whose motivations are directly related to their employers- needs, as well as their own career ambitions. We argue that while increasing WBL participation, and use of SSD are both accepted as being of strategic importance to the HE agenda, the use of WBL SSD is rarely examined, and lessons can be learned from the comparison of SSD from a range of WBL programmes, and increased visibility of this type of data will provide insight into ways to improve and develop this type of delivery. The key themes that emerged from the analysis of the interview data were: learners profiles and needs, employers drivers, academic staff drivers, organizational approach, tools for collecting data and visibility of findings. The paper concludes with observations on best practice in the collection, analysis and use of WBL SSD, thus offering recommendations for both academic managers and practitioners.

A Predictive Rehabilitation Software for Cerebral Palsy Patients

Young patients suffering from Cerebral Palsy are facing difficult choices concerning heavy surgeries. Diagnosis settled by surgeons can be complex and on the other hand decision for patient about getting or not such a surgery involves important reflection effort. Proposed software combining prediction for surgeries and post surgery kinematic values, and from 3D model representing the patient is an innovative tool helpful for both patients and medicine professionals. Beginning with analysis and classification of kinematics values from Data Base extracted from gait analysis in 3 separated clusters, it is possible to determine close similarity between patients. Prediction surgery best adapted to improve a patient gait is then determined by operating a suitable preconditioned neural network. Finally, patient 3D modeling based on kinematic values analysis, is animated thanks to post surgery kinematic vectors characterizing the closest patient selected from patients clustering.

Effect of the Internet on Social Capital

Internet access is a vital part of the modern world and an important tool in the education of our children. It is present in schools, homes and even shopping malls. Mastering the use of the internet is likely to be an important skill for those entering the job markets of the future. An internet user can be anyone he or she wants to be in an online chat room, or play thrilling and challenging games against other players from all corners of the globe. It seems at present time (or near future) for many people relationships in the real world may be neglected as those in the virtual world increase in importance. Internet is provided a fast mode of transportation caused freedom from family bonds and mixing with different cultures and new communities. This research is an attempt to study effect of Internet on Social capital. For this purpose a survey technique on the sample size amounted 168 students of Payame Noor University of Kermanshah city in country of Iran were considered. Degree of social capital is moderate. With the help of the Multi-variable Regression, variables of Iranian message attractive, Interest to internet with effect of positive and variable Creating a cordial atmosphere with negative effect be significant.

Performance Evaluation of Qos Parameters in Cognitive Radio Using Genetic Algorithm

The efficient use of available licensed spectrum is becoming more and more critical with increasing demand and usage of the radio spectrum. This paper shows how the use of spectrum as well as dynamic spectrum management can be effectively managed and spectrum allocation schemes in the wireless communication systems be implemented and used, in future. This paper would be an attempt towards better utilization of the spectrum. This research will focus on the decision-making process mainly, with an assumption that the radio environment has already been sensed and the QoS requirements for the application have been specified either by the sensed radio environment or by the secondary user itself. We identify and study the characteristic parameters of Cognitive Radio and use Genetic Algorithm for spectrum allocation. Performance evaluation is done using MATLAB toolboxes.

Anomaly Detection using Neuro Fuzzy system

As the network based technologies become omnipresent, demands to secure networks/systems against threat increase. One of the effective ways to achieve higher security is through the use of intrusion detection systems (IDS), which are a software tool to detect anomalous in the computer or network. In this paper, an IDS has been developed using an improved machine learning based algorithm, Locally Linear Neuro Fuzzy Model (LLNF) for classification whereas this model is originally used for system identification. A key technical challenge in IDS and LLNF learning is the curse of high dimensionality. Therefore a feature selection phase is proposed which is applicable to any IDS. While investigating the use of three feature selection algorithms, in this model, it is shown that adding feature selection phase reduces computational complexity of our model. Feature selection algorithms require the use of a feature goodness measure. The use of both a linear and a non-linear measure - linear correlation coefficient and mutual information- is investigated respectively

Artificial Intelligence for Software Quality Improvement

This paper presents a software quality support tool, a Java source code evaluator and a code profiler based on computational intelligence techniques. It is Java prototype software developed by AI Group [1] from the Research Laboratories at Universidad de Palermo: an Intelligent Java Analyzer (in Spanish: Analizador Java Inteligente, AJI). It represents a new approach to evaluate and identify inaccurate source code usage and transitively, the software product itself. The aim of this project is to provide the software development industry with a new tool to increase software quality by extending the value of source code metrics through computational intelligence.

2D and 3D Finite Element Method Packages of CEMTool for Engineering PDE Problems

CEMTool is a command style design and analyzing package for scientific and technological algorithm and a matrix based computation language. In this paper, we present new 2D & 3D finite element method (FEM) packages for CEMTool. We discuss the detailed structures and the important features of pre-processor, solver, and post-processor of CEMTool 2D & 3D FEM packages. In contrast to the existing MATLAB PDE Toolbox, our proposed FEM packages can deal with the combination of the reserved words. Also, we can control the mesh in a very effective way. With the introduction of new mesh generation algorithm and fast solving technique, our FEM packages can guarantee the shorter computational time than MATLAB PDE Toolbox. Consequently, with our new FEM packages, we can overcome some disadvantages or limitations of the existing MATLAB PDE Toolbox.

MMU Simulation in Hardware Simulator Based-on State Transition Models

Embedded hardware simulator is a valuable computeraided tool for embedded application development. This paper focuses on the ARM926EJ-S MMU, builds state transition models and formally verifies critical properties for the models. The state transition models include loading instruction model, reading data model, and writing data model. The properties of the models are described by CTL specification language, and they are verified in VIS. The results obtained in VIS demonstrate that the critical properties of MMU are satisfied in the state transition models. The correct models can be used to implement the MMU component in our simulator. In the end of this paper, the experimental results show that the MMU can successfully accomplish memory access requests from CPU.