Control-flow Complexity Measurement of Processes and Weyuker's Properties

Process measurement is the task of empirically and objectively assigning numbers to the properties of business processes in such a way as to describe them. Desirable attributes to study and measure include complexity, cost, maintainability, and reliability. In our work we will focus on investigating process complexity. We define process complexity as the degree to which a business process is difficult to analyze, understand or explain. One way to analyze a process- complexity is to use a process control-flow complexity measure. In this paper, an attempt has been made to evaluate the control-flow complexity measure in terms of Weyuker-s properties. Weyuker-s properties must be satisfied by any complexity measure to qualify as a good and comprehensive one.

Auto Tuning PID Controller based on Improved Genetic Algorithm for Reverse Osmosis Plant

An optimal control of Reverse Osmosis (RO) plant is studied in this paper utilizing the auto tuning concept in conjunction with PID controller. A control scheme composing an auto tuning stochastic technique based on an improved Genetic Algorithm (GA) is proposed. For better evaluation of the process in GA, objective function defined newly in sense of root mean square error has been used. Also in order to achieve better performance of GA, more pureness and longer period of random number generation in operation are sought. The main improvement is made by replacing the uniform distribution random number generator in conventional GA technique to newly designed hybrid random generator composed of Cauchy distribution and linear congruential generator, which provides independent and different random numbers at each individual steps in Genetic operation. The performance of newly proposed GA tuned controller is compared with those of conventional ones via simulation.

Effect of Flaying Capacitors on Improving the 4 Level Three-Cell Inverter

With the rapid advanced of technology, the industrial processes become increasingly demanding, from the point of view, power quality and controllability. The advent of multi levels inverters responds partially to these requirements. But actually, the new generation of multi-cells inverters permits to reach more performances, since, it offers more voltage levels. The disadvantage in the increase of voltage levels by the number of cells in cascades is on account of series igbts synchronisation loss, from where, a limitation of cells in cascade to 4. Regarding to these constraints, a new topology is proposed in this paper, which increases the voltage levels of the three-cell inverter from 4 to 8; with the same number of igbts, and using less stored energy in the flaying capacitors. The details of operation and modelling of this new inverter structure are also presented, then tested thanks to a three phase induction motor. KeywordsFlaying capacitors, Multi-cells inverter, pwm, switchers, modelling.

Dynamic Modeling of Underplateform Damper used in Turbomachinery

The present work deals with the structural analysis of turbine blades and modeling of turbine blades. A common failure mode for turbine machines is high cycle of fatigue of compressor and turbine blades due to high dynamic stresses caused by blade vibration and resonance within the operation range of the machinery. In this work, proper damping system will be analyzed to reduce the vibrating blade. The main focus of the work is the modeling of under platform damper to evaluate the dynamic analysis of turbine-blade vibrations. The system is analyzed using Bond graph technique. Bond graph is one of the most convenient ways to represent a system from the physical aspect in foreground. It has advantage of putting together multi-energy domains of a system in a single representation in a unified manner. The bond graph model of dry friction damper is simulated on SYMBOLS-shakti® software. In this work, the blades are modeled as Timoshenko beam. Blade Vibrations under different working conditions are being analyzed numerically.

A Systems Modeling Approach to Support Environmentally Sustainable Business Development in Manufacturing SMEs

Small and Medium Sized Enterprises (SMEs) play an important role in many economies. In New Zealand, for example, 97% of all manufacturing companies employ less than 100 staff, and generate the predominant part of this industry sector-s economic output. Manufacturing SMEs as a group also have a significant impact on the environment. This situation is similar in many developed economies, including the European Union. Sustainable economic development therefore needs to strongly consider the role of manufacturing SMEs, who generally find it challenging to move towards more environmentally friendly business practices. This paper presents a systems thinking approach to modelling and understanding the factors which have an influence on the successful uptake of environmental practices in small and medium sized manufacturing companies. It presents a number of causal loop diagrams which have been developed based on primary action research, and a thorough understanding of the literature in this area. The systems thinking model provides the basis for further development of a strategic framework for the successful uptake of environmental innovation in manufacturing SMEs.

Optical Limiting Characteristics of Core-Shell Nanoparticles

TiO2 nanoparticles were synthesized by hydrothermal method at 180°C from TiOSO4 aqueous solution with1m/l concentration. The obtained products were coated with silica by means of a seeded polymerization technique for a coating time of 1440 minutes to obtain well defined TiO2@SiO2 core-shell structure. The uncoated and coated nanoparticles were characterized by using X-Ray diffraction technique (XRD), Fourier Transform Infrared Spectroscopy (FT-IR) to study their physico-chemical properties. Evidence from XRD and FTIR results show that SiO2 is homogenously coated on the surface of titania particles. FTIR spectra show that there exists an interaction between TiO2 and SiO2 and results in the formation of Ti-O-Si chemical bonds at the interface of TiO2 particles and SiO2 coating layer. The non linear optical limiting properties of TiO2 and TiO2@SiO2 nanoparticles dispersed in ethylene glycol were studied at 532nm using 5ns Nd:YAG laser pulses. Three-photon absorption is responsible for optical limiting characteristics in these nanoparticles and it is seen that the optical nonlinearity is enhanced in core-shell structures when compared with single counterparts. This effective three-photon type absorption at this wavelength, is of potential application in fabricating optical limiting devices.

Quantitative Estimation of Periodicities in Lyari River Flow Routing

The hydrologic time series data display periodic structure and periodic autoregressive process receives considerable attention in modeling of such series. In this communication long term record of monthly waste flow of Lyari river is utilized to quantify by using PAR modeling technique. The parameters of model are estimated by using Frances & Paap methodology. This study shows that periodic autoregressive model of order 2 is the most parsimonious model for assessing periodicity in waste flow of the river. A careful statistical analysis of residuals of PAR (2) model is used for establishing goodness of fit. The forecast by using proposed model confirms significance and effectiveness of the model.

A Comparative Study into Observer based Fault Detection and Diagnosis in DC Motors: Part-I

A model based fault detection and diagnosis technique for DC motor is proposed in this paper. Fault detection using Kalman filter and its different variants are compared. Only incipient faults are considered for the study. The Kalman Filter iterations and all the related computations required for fault detection and fault confirmation are presented. A second order linear state space model of DC motor is used for this work. A comparative assessment of the estimates computed from four different observers and their relative performance is evaluated.

A High Standard Isolated Insolated Photovoltaic Egyptian Safari Rest Red Sea Area

Where renewable energy sources, solar, hydro, wind are available the remote communities and businesses can be provided with the most reliable and affordable source of electrical energy. This paper presents a model of safari rest contains all the necessary services for the interested tourists who visit the safari Sinai desert. The PV energy system provides the rural energy needs of remote communities. A photovoltaic renewable energy system is designed to feed the global Ac and Dc electrical required load of this safari rest . The benefits of photovoltaic renewable energy at rural applications are its versatility and convenience. This model of safari rest must be taken in consideration by Egyptian Government as it will provide the tourism plane by new interested tourism field which put a big spot on Red sea area: El Ghordaka.

Optimal Algorithm for Constructing the Delaunay Triangulation in Ed

In this paper we propose a new approach to constructing the Delaunay Triangulation and the optimum algorithm for the case of multidimensional spaces (d ≥ 2). Analysing the modern state, it is possible to draw a conclusion, that the ideas for the existing effective algorithms developed for the case of d ≥ 2 are not simple to generalize on a multidimensional case, without the loss of efficiency. We offer for the solving this problem an effective algorithm that satisfies all the given requirements. But theoretical complexity of the problem it is impossible to improve as the Worst - Case Optimality for algorithms of solving such a problem is proved.

Sufficiency Economy: A Contribution to Economic Development

The Philosophy of Sufficiency Economy, bestowed by His Majesty the King Bhumibol Adulyadej to the people of Thailand, highlights a balanced way of living. Three principles of moderation reasonableness, and immunity, along with the conditions for morality and knowledge, can be applied to any level of the society–from an individual to the nation. The Philosophy of Sufficiency Economy helps address the current development challenges, which are issues on institutions, environmental sustainability, human well-being, and the role of the government.

Semantic Spatial Objects Data Structure for Spatial Access Method

Modern spatial database management systems require a unique Spatial Access Method (SAM) in order solve complex spatial quires efficiently. In this case the spatial data structure takes a prominent place in the SAM. Inadequate data structure leads forming poor algorithmic choices and forging deficient understandings of algorithm behavior on the spatial database. A key step in developing a better semantic spatial object data structure is to quantify the performance effects of semantic and outlier detections that are not reflected in the previous tree structures (R-Tree and its variants). This paper explores a novel SSRO-Tree on SAM to the Topo-Semantic approach. The paper shows how to identify and handle the semantic spatial objects with outlier objects during page overflow/underflow, using gain/loss metrics. We introduce a new SSRO-Tree algorithm which facilitates the achievement of better performance in practice over algorithms that are superior in the R*-Tree and RO-Tree by considering selection queries.

Weak Measurement Theory for Discrete Scales

With the increasing spread of computers and the internet among culturally, linguistically and geographically diverse communities, issues of internationalization and localization and becoming increasingly important. For some of the issues such as different scales for length and temperature, there is a well-developed measurement theory. For others such as date formats no such theory will be possible. This paper fills a gap by developing a measurement theory for a class of scales previously overlooked, based on discrete and interval-valued scales such as spanner and shoe sizes. The paper gives a theoretical foundation for a class of data representation problems.

Molecular Docking on Recomposed versus Crystallographic Structures of Zn-Dependent Enzymes and their Natural Inhibitors

Matrix metalloproteinases (MMP) are a class of structural and functional related enzymes involved in altering the natural elements of the extracellular matrix. Most of the MMP structures are cristalographycally determined and published in WorldWide ProteinDataBank, isolated, in full structure or bound to natural or synthetic inhibitors. This study proposes an algorithm to replace missing crystallographic structures in PDB database. We have compared the results of a chosen docking algorithm with a known crystallographic structure in order to validate enzyme sites reconstruction there where crystallographic data are missing.

Density Estimation using Generalized Linear Model and a Linear Combination of Gaussians

In this paper we present a novel approach for density estimation. The proposed approach is based on using the logistic regression model to get initial density estimation for the given empirical density. The empirical data does not exactly follow the logistic regression model, so, there will be a deviation between the empirical density and the density estimated using logistic regression model. This deviation may be positive and/or negative. In this paper we use a linear combination of Gaussian (LCG) with positive and negative components as a model for this deviation. Also, we will use the expectation maximization (EM) algorithm to estimate the parameters of LCG. Experiments on real images demonstrate the accuracy of our approach.

Solid-State Bioconversion of Pineapple Residues into Kojic Acid by Aspergillus flavus: A Prospective Study

Kojic acid is an organic acid that is widely used as an ingredient for dermatological products, precursor for flavor enhancer and also as anti-inflammatory drug. The present study was undertaken to test the feasibility of pineapple residues as substrate for kojic acid production by Aspergillus flavus Link 44-1 via solid-state fermentation. The effect of initial moisture content, pH and incubation time on kojic acid fermentation was investigated. The best initial moisture content for kojic acid production from pineapple residues was observed at 70% (v/w) whereas initial culture pH 2.5 was identified to give high production of kojic acid. The optimal range of incubation time was identified between 8 and 14 days of incubation which corresponded to highest range of kojic acid produced. The results from this study pronounce the promising usability of pineapple residues as alternative substrate for kojic acid production by A. flavus Link 44-1.

Principal Component Analysis-Ranking as a Variable Selection Method for the Simultaneous Spectrophotometric Determination of Phenol, Resorcinol and Catechol in Real Samples

Simultaneous determination of multicomponents of phenol, resorcinol and catechol with a chemometric technique a PCranking artificial neural network (PCranking-ANN) algorithm is reported in this study. Based on the data correlation coefficient method, 3 representative PCs are selected from the scores of original UV spectral data (35 PCs) as the original input patterns for ANN to build a neural network model. The results obtained by iterating 8000 .The RMSEP for phenol, resorcinol and catechol with PCranking- ANN were 0.6680, 0.0766 and 0.1033, respectively. Calibration matrices were 0.50-21.0, 0.50-15.1 and 0.50-20.0 μg ml-1 for phenol, resorcinol and catechol, respectively. The proposed method was successfully applied for the determination of phenol, resorcinol and catechol in synthetic and water samples.

Anomaly Detection using Neuro Fuzzy system

As the network based technologies become omnipresent, demands to secure networks/systems against threat increase. One of the effective ways to achieve higher security is through the use of intrusion detection systems (IDS), which are a software tool to detect anomalous in the computer or network. In this paper, an IDS has been developed using an improved machine learning based algorithm, Locally Linear Neuro Fuzzy Model (LLNF) for classification whereas this model is originally used for system identification. A key technical challenge in IDS and LLNF learning is the curse of high dimensionality. Therefore a feature selection phase is proposed which is applicable to any IDS. While investigating the use of three feature selection algorithms, in this model, it is shown that adding feature selection phase reduces computational complexity of our model. Feature selection algorithms require the use of a feature goodness measure. The use of both a linear and a non-linear measure - linear correlation coefficient and mutual information- is investigated respectively

Artificial Intelligence for Software Quality Improvement

This paper presents a software quality support tool, a Java source code evaluator and a code profiler based on computational intelligence techniques. It is Java prototype software developed by AI Group [1] from the Research Laboratories at Universidad de Palermo: an Intelligent Java Analyzer (in Spanish: Analizador Java Inteligente, AJI). It represents a new approach to evaluate and identify inaccurate source code usage and transitively, the software product itself. The aim of this project is to provide the software development industry with a new tool to increase software quality by extending the value of source code metrics through computational intelligence.