Developing Islamic Module Project for Preschool Teachers Using Modified Delphi Technique

The purpose of this study is to gather the consensus of experts regarding the use of moral guidance amongst preschool teachers vis-a-vis the Islamic Project module (I-Project Module). This I-Project Module seeks to provide pertinent data on the assimilation of noble values in subject-matter teaching. To obtain consensus for the various components of the module, the Modified Delphi technique was used to develop the module. 12 subject experts from various educational fields of Islamic education, early childhood education, counselling and language fully participated in the development of this module. The Modified Delphi technique was administered in two mean cycles. The standard deviation value derived from questionnaires completed by the participating panel of experts provided the value of expert consensus reached. This was subsequently analyzed using SPSS version 22. Findings revealed that the panel of experts reached a discernible degree of agreement on five topics outlined in the module, viz; content (mean value 3.36), teaching strategy (mean value 3.28), programme duration (mean value 3.0), staff involved and attention-grabbing strategy of target group participating in the value program (mean value 3.5), and strategy to attract attention of target group to utilize i-project (mean value 3.0). With regard to the strategy to attract the attention of the target group, the experts proposed for creative activities to be added in order to enhance teachers’ creativity.

Fault-Tolerant Control Study and Classification: Case Study of a Hydraulic-Press Model Simulated in Real-Time

Society demands more reliable manufacturing processes capable of producing high quality products in shorter production cycles. New control algorithms have been studied to satisfy this paradigm, in which Fault-Tolerant Control (FTC) plays a significant role. It is suitable to detect, isolate and adapt a system when a harmful or faulty situation appears. In this paper, a general overview about FTC characteristics are exposed; highlighting the properties a system must ensure to be considered faultless. In addition, a research to identify which are the main FTC techniques and a classification based on their characteristics is presented in two main groups: Active Fault-Tolerant Controllers (AFTCs) and Passive Fault-Tolerant Controllers (PFTCs). AFTC encompasses the techniques capable of re-configuring the process control algorithm after the fault has been detected, while PFTC comprehends the algorithms robust enough to bypass the fault without further modifications. The mentioned re-configuration requires two stages, one focused on detection, isolation and identification of the fault source and the other one in charge of re-designing the control algorithm by two approaches: fault accommodation and control re-design. From the algorithms studied, one has been selected and applied to a case study based on an industrial hydraulic-press. The developed model has been embedded under a real-time validation platform, which allows testing the FTC algorithms and analyse how the system will respond when a fault arises in similar conditions as a machine will have on factory. One AFTC approach has been picked up as the methodology the system will follow in the fault recovery process. In a first instance, the fault will be detected, isolated and identified by means of a neural network. In a second instance, the control algorithm will be re-configured to overcome the fault and continue working without human interaction.

The Effects of T-Walls on Urban Landscape and Quality of Life and Anti-Terror Design Concept in Kabul, Afghanistan

Kabul city has suffered a lot in 40 years of conflict of civil war and “The war on terror”. After the invasion of Afghanistan by the United States of America and its allies in 2001, the Taliban was removed from operational power, but The Taliban and other terrorist groups remained in remote areas of the country, they started suicide attacks and bombings. Hence to protect from these attacks officials surrounded their office buildings and houses with concrete blast walls. It gives a bad landscape to the city and creates traffic congestions. Our research contains; questionnaire, reviewing Kabul Municipality documents and literature review. Questionnaires were distributed to Kabul citizens to find out how people feel by seeing the T-Walls on Kabul streets? And what problems they face with T-Walls. “The T-Walls pull down commission” of Kabul Municipality documents were reviewed to find out what caused the failure of this commission. A literature review has been done to compare Kabul with Washington D.C on how they designed the city against terrorism threat without turning the cities into lock down. Bogota city of Columbia urban happiness movement is reviewed and compared with Kabul. The finding of research revealed that citizens of Kabul want security but not at the expense of public realm and creating the architecture of fear. It also indicates that increasing the T-walls do not give secure feeling but instead; it increases terror, hatred and affect people’s optimism. At the end, a series of recommendation is suggested on the issue.

Energy Planning Analysis of an Agritourism Complex Based on Energy Demand Simulation: A Case Study of Wuxi Yangshan Agritourism Complex

China is experiencing the rural development process, with the agritourism complex becoming one of the significant modes. Therefore, it is imperative to understand the energy performance of agritourism complex. This study focuses on a typical case of the agritourism complex and simulates the energy consumption performance on condition of the regular energy system. It was found that HVAC took 90% of the whole energy demand range. In order to optimize the energy supply structure, the hierarchical analysis was carried out on the level of architecture with three main factors such as construction situation, building types and energy demand types. Finally, the energy planning suggestion of the agritourism complex was put forward and the relevant results were obtained.

Effect of Soaking Period of Clay on Its California Bearing Ratio Value

The quality of road pavement is affected mostly by the type of sub-grade which is acting as road foundation. The roads degradation is related to many factors especially the climatic conditions, the quality, and the thickness of the base materials. The thickness of this layer depends on its California Bearing Ratio (CBR) test value which by its turn is highly affected by the quantity of water infiltrated under the road after heavy rain. The capacity of the base material to drain out its water is predominant factor because any change in moisture content causes change in sub-grade strength. This paper studies the effect of the soaking period of soil especially clay on its CBR value. For this reason, we collected many clayey samples in order to study the effect of the soaking period on its CBR value. On each soil, two groups of experiments were performed: main tests consisting of Proctor and CBR test from one side and from other side identification tests consisting of other tests such as Atterberg limits tests. Each soil sample was first subjected to Proctor test in order to find its optimum moisture content which will be used to perform the CBR test. Four CBR tests were performed on each soil with different soaking period. The first CBR was done without soaking the soil sample; the second one with two days soaking, the third one with four days soaking period and the last one was done under eight days soaking. By comparing the results of CBR tests performed with different soaking time, a more detailed understanding was given to the role of the water in reducing the CBR of soil. In fact, by extending the soaking period, the CBR was found to be reduced quickly the first two days and slower after. A precise reduction factor of the CBR in relation with soaking period was found at the end of this paper.

Optimal Location of the I/O Point in the Parking System

In this paper, we deal with the optimal I/O point location in an automated parking system. In this system, the S/R machine (storage and retrieve machine) travels independently in vertical and horizontal directions. Based on the characteristics of the parking system and the basic principle of AS/RS system (Automated Storage and Retrieval System), we obtain the continuous model in units of time. For the single command cycle using the randomized storage policy, we calculate the probability density function for the system travel time and thus we develop the travel time model. And we confirm that the travel time model shows a good performance by comparing with discrete case. Finally in this part, we establish the optimal model by minimizing the expected travel time model and it is shown that the optimal location of the I/O point is located at the middle of the left-hand above corner.

Mutual Authentication for Sensor-to-Sensor Communications in IoT Infrastructure

Internet of things is a new concept that its emergence has caused ubiquity of sensors in human life, so that at any time, all data are collected, processed and transmitted by these sensors. In order to establish a secure connection, the first challenge is authentication between sensors. However, this challenge also requires some features so that the authentication is done properly. Anonymity, untraceability, and being lightweight are among the issues that need to be considered. In this paper, we have evaluated the authentication protocols and have analyzed the security vulnerabilities found in them. Then an improved light weight authentication protocol for sensor-to-sensor communications is presented which uses the hash function and logical operators. The analysis of protocol shows that security requirements have been met and the protocol is resistant against various attacks. In the end, by decreasing the number of computational cost functions, it is argued that the protocol is lighter than before.

Investigation of Seismic T-Resisting Frame with Shear and Flexural Yield of Horizontal Plate Girders

There are some limitations in common structural systems, such as providing appropriate lateral stiffness, adequate ductility, and architectural openings at the same time. Consequently, the concept of T-Resisting Frame (TRF) has been introduced to overcome all these deficiencies. The configuration of TRF in this study is a Vertical Plate Girder (VPG) which is placed within the span and two Horizontal Plate Girders (HPGs) connect VPG to side columns at each story level by the use of rigid connections. System performance is improved by utilizing rigid connections in side columns base joint. Shear yield of HPGs causes energy dissipation in TRF; therefore, high plastic deformation in web of HPGs and VPG affects the ductility of system. Moreover, in order to prevent shear buckling in web of TRF’s members and appropriate criteria for placement of web stiffeners are applied. In this paper, an experimental study is conducted by applying cyclic loading and using finite element models and numerical studies such as push over method are assessed on shear and flexural yielding of HPGs. As a result, seismic parameters indicate adequate lateral stiffness, and high ductility factor of 6.73, and HPGs’ shear yielding achieved as a proof of TRF’s better performance.

The Effect of an Al Andalus Fused Curriculum Model on the Learning Outcomes of Elementary School Students

The study was carried out in the Elementary Classes of Andalus Private Schools, girls section using control and experimental groups formed by Random Assignment Strategy. The study aimed at investigating the effect of Al-Andalus Fused Curriculum (AFC) model of learning and the effect of separate subjects’ approach on the development of students’ conceptual learning and skills acquiring. The society of the study composed of Al-Andalus Private Schools, elementary school students, Girls Section (N=240), while the sample of the study composed of two randomly assigned groups (N=28) with one experimental group and one control group. The study followed the quantitative and qualitative approaches in collecting and analyzing data to investigate the study hypotheses. Results of the study revealed that there were significant statistical differences between students’ conceptual learning and skills acquiring for the favor of the experimental group. The study recommended applying this model on different educational variables and on other age groups to generate more data leading to more educational results for the favor of students’ learning outcomes.

Received Signal Strength Indicator Based Localization of Bluetooth Devices Using Trilateration: An Improved Method for the Visually Impaired People

The instantaneous and spatial localization for visually impaired people in dynamically changing environments with unexpected hazards and obstacles, is the most demanding and challenging issue faced by the navigation systems today. Since Bluetooth cannot utilize techniques like Time Difference of Arrival (TDOA) and Time of Arrival (TOA), it uses received signal strength indicator (RSSI) to measure Receive Signal Strength (RSS). The measurements using RSSI can be improved significantly by improving the existing methodologies related to RSSI. Therefore, the current paper focuses on proposing an improved method using trilateration for localization of Bluetooth devices for visually impaired people. To validate the method, class 2 Bluetooth devices were used along with the development of a software. Experiments were then conducted to obtain surface plots that showed the signal interferences and other environmental effects. Finally, the results obtained show the surface plots for all Bluetooth modules used along with the strong and weak points depicted as per the color codes in red, yellow and blue. It was concluded that the suggested improved method of measuring RSS using trilateration helped to not only measure signal strength affectively but also highlighted how the signal strength can be influenced by atmospheric conditions such as noise, reflections, etc.

Design and Fabrication of a Parabolic Trough Collector and Experimental Investigation of Wind Impact on Direct Steam Production in Tehran

The present paper aims to the techno-economic feasibility of enhancing low-cost parabolic trough collectors in the light of developing the use of solar energy in under-developed regions where expensive high-tech solar devices cannot be afforded. Moreover, the collector is aimed to produce steam so that its performance is based on heat which can be discovered. In this regard, the manufacturing process and the detailed design models in Solidworks software are elaborated. Furthermore, the colletor’s material is chosen in a way to minimize the costs. Finally, to assess the performance of the built collector, it is installed in the site of Shahid Beheshti University, Tehran, and the values of the effective peripheral parameters, such as temperature, wind speed, and most importantly, solar irradiance, are recorded simultaneously in June. According to the results obtained, the manufactured collector with the aperture area of 2 m2 (1×2 m) is capable of producing 350 ml.h-1 steam. Also, the wind influence is comprehensively investigated in this paper. As a case in point, it was measured that as the wind speed maximized to 9.77 km/h, the amount of steam outlet is minimized to 580 ml.

A Combined Cipher Text Policy Attribute-Based Encryption and Timed-Release Encryption Method for Securing Medical Data in Cloud

The biggest problem in cloud is securing an outsourcing data. A cloud environment cannot be considered to be trusted. It becomes more challenging when outsourced data sources are managed by multiple outsourcers with different access rights. Several methods have been proposed to protect data confidentiality against the cloud service provider to support fine-grained data access control. We propose a method with combined Cipher Text Policy Attribute-based Encryption (CP-ABE) and Timed-release encryption (TRE) secure method to control medical data storage in public cloud.

Effect of Wind and Humidity on Microwave Links in North West Libya

The propagation of microwave is affected by rain and dust particles causing signal attenuation and de-polarization. Computations of these effects require knowledge of the propagation characteristics of microwave and millimeter wave energy in the climate conditions of the studied region. This paper presents effect of wind and humidity on wireless communication such as microwave links in the North West region of Libya (Al-Khoms). The experimental procedure is done on three selected antennae towers (Nagaza station, Al-Khoms center station, Al-Khoms gateway station) for determining the attenuation loss per unit length and cross-polarization discrimination (XPD) change. Dust particles are collected along the region of the study, to measure the particle size distribution (PSD), calculate the concentration, and chemically analyze the contents, then the dielectric constant can be calculated. The results show that humidity and dust, antenna height and the visibility affect both attenuation and phase shift; in which, a few considerations must be taken into account in the communication power budget.

Experimental and Numerical Study of Ultra-High-Performance Fiber-Reinforced Concrete Column Subjected to Axial and Eccentric Loads

Ultra-high-performance fiber reinforced concrete (UHPFRC) is a specially formulated cement-based composite characterized with an ultra-high compressive strength (fc’ = 240 MPa) and a low water-cement ratio (W/B= 0.2). With such material characteristics, UHPFRC is favored for the design and constructions of structures required high structural performance and slender geometries. Unlike conventional concrete, the structural performance of members manufactured with UHPFRC has not yet been fully studied, particularly, for UHPFRC columns with high slenderness. In this study, the behaviors of slender UHPFRC columns under concentric or eccentric load will be investigated both experimentally and numerically. Four slender UHPFRC columns were tested under eccentric loads with eccentricities, of 0 mm, 35 mm, 50 mm, and 85 mm, respectively, and one UHPFRC beam was tested under four-point bending. Finite element (FE) analysis was conducted with concrete damage plasticity (CDP) modulus to simulating the load-middle height or middle span deflection relationships and damage patterns of all UHPFRC members. Simulated results were compared against the experimental results and observation to gain the confidence of FE model, and this model was further extended to conduct parametric studies, which aim to investigate the effects of slenderness regarding failure modes and load-moment interaction relationships. Experimental results showed that the load bearing capacities of the slender columns reduced with an increase in eccentricity. Comparisons between load-middle height and middle span deflection relationships as well as damage patterns of all UHPFRC members obtained both experimentally and numerically demonstrated high accuracy of the FE simulations. Based on the available FE model, the following parametric study indicated that a further increase in the slenderness of column resulted in significant decreases in the load-bearing capacities, ductility index, and flexural bending capacities.

An Experimental Comparative Study of SI Engine Performance and Emission Characteristics Fuelled with Various Gasoline-Alcohol Blends

This experimental investigation aimed to determine the influence of using different types of alcohol and gasoline blends such as ethanol - butanol - propanol on the performance of spark ignition engine. The experimental work studied the effect of various fuel blends such as ethanol – butanol/gasoline and propanol/gasoline with two rates of 15% and 20%, at different operating conditions (engine speed and loads), on engine performance emission characteristics. Laboratory experiments are carried out on a four-cylinder spark ignition (SI) engine. In this practical study, all considerations and precautions are taken into account to ensure the quality and accuracy of practical experiments and different measurements. The results show that the performance of the engine improved significantly in the case of ethanol/butanol-gasoline blends. The results also indicated that the engine emitted pollutants such as CO, hydrocarbon (HC) for alcohol fuel blends compared to base gasoline NOx emission increased for different fuel blends either ethanol/butanol-gasoline or propanol-gasoline fuel blend.

Optimization of Two Quality Characteristics in Injection Molding Processes via Taguchi Methodology

The main objective of this research is to optimize tensile strength and dimensional accuracy in injection molding processes using Taguchi Parameter Design. An L16 orthogonal array (OA) is used in Taguchi experimental design with five control factors at four levels each and with non-controllable factor vibration. A total of 32 experiments were designed to obtain the optimal parameter setting for the process. The optimal parameters identified for the shrinkage are shot volume, 1.7 cubic inch (A4); mold term temperature, 130 ºF (B1); hold pressure, 3200 Psi (C4); injection speed, 0.61 inch3/sec (D2); and hold time of 14 seconds (E2). The optimal parameters identified for the tensile strength are shot volume, 1.7 cubic inch (A4); mold temperature, 160 ºF (B4); hold pressure, 3100 Psi (C3); injection speed, 0.69 inch3/sec (D4); and hold time of 14 seconds (E2). The Taguchi-based optimization framework was systematically and successfully implemented to obtain an adjusted optimal setting in this research. The mean shrinkage of the confirmation runs is 0.0031%, and the tensile strength value was found to be 3148.1 psi. Both outcomes are far better results from the baseline, and defects have been further reduced in injection molding processes.

A Domain Specific Modeling Language Semantic Model for Artefact Orientation

Since the process of transforming user requirements to modeling constructs are not very well supported by domain-specific frameworks, it became necessary to integrate domain requirements with the specific architectures to achieve an integrated customizable solutions space via artifact orientation. Domain-specific modeling language specifications of model-driven engineering technologies focus more on requirements within a particular domain, which can be tailored to aid the domain expert in expressing domain concepts effectively. Modeling processes through domain-specific language formalisms are highly volatile due to dependencies on domain concepts or used process models. A capable solution is given by artifact orientation that stresses on the results rather than expressing a strict dependence on complicated platforms for model creation and development. Based on this premise, domain-specific methods for producing artifacts without having to take into account the complexity and variability of platforms for model definitions can be integrated to support customizable development. In this paper, we discuss methods for the integration capabilities and necessities within a common structure and semantics that contribute a metamodel for artifact-orientation, which leads to a reusable software layer with concrete syntax capable of determining design intents from domain expert. These concepts forming the language formalism are established from models explained within the oil and gas pipelines industry.

A Neural Network Control for Voltage Balancing in Three-Phase Electric Power System

The three-phase power system suffers from different challenging problems, e.g. voltage unbalance conditions at the load side. The voltage unbalance usually degrades the power quality of the electric power system. Several techniques can be considered for load balancing including load reconfiguration, static synchronous compensator and static reactive power compensator. In this work an efficient neural network is designed to control the unbalanced condition in the Aqaba-Qatrana-South Amman (AQSA) electric power system. It is designed for highly enhanced response time of the reactive compensator for voltage balancing. The neural network is developed to determine the appropriate set of firing angles required for the thyristor-controlled reactor to balance the three load voltages accurately and quickly. The parameters of AQSA power system are considered in the laboratory model, and several test cases have been conducted to test and validate the proposed technique capabilities. The results have shown a high performance of the proposed Neural Network Control (NNC) technique for correcting the voltage unbalance conditions at three-phase load based on accuracy and response time.

An Approach to Measure Snow Depth of Winter Accumulation at Basin Scale Using Satellite Data

Snow depth estimation and monitoring studies have been carried out for decades using empirical relationship or extrapolation of point measurements carried out in field. With the development of advanced satellite based remote sensing techniques, a modified approach is proposed in the present study to estimate the winter accumulated snow depth at basin scale. Assessment of snow depth by differencing Digital Elevation Model (DEM) generated at the beginning and end of winter season can be experimented for the region of interest (Himalayan and polar regions) accounting for winter accumulation (solid precipitation). The proposed approach is based on existing geodetic method that is being used for glacier mass balance estimation. Considering the satellite datasets purely acquired during beginning and end of winter season, it is possible to estimate the change in depth or thickness for the snow that is accumulated during the winter as it takes one year for the snow to get transformed into firn (snow that has survived one summer or one-year old snow).

Attitude towards the Consumption of Social Media: Analyzing Young Consumers’ Travel Behavior

Advancement of new media technology and consumption of social media have altered the way of communication in the tourism industry, mostly for consumers’ travel planning, online purchase, and experience sharing activity. There is an accelerating trend among young consumers’ to utilize this new media technology. This paper aims to analyze the attitude of young consumers’ about social media use for travel purposes. The convenience random sample method used to collect data from an urban area of Shanghai (China), consists of 225 young consumers’. This survey identified behavioral determinants of social media consumption by the extended theory of planned behavior (TPB). The instrument developed support on previous research to test hypotheses. The results of structural analyses indicate that attitude towards the use of social media is affected by external factors such as availability and accessibility of technology. In addition, subjective norm and perceived behavioral control have partially influenced the attitude of respondents’. The results of this study could help to improve social media travel marketing and promotional strategies for respective groups.