An Implicit Representation of Spherical Product for Increasing the Shape Variety of Super-quadrics in Implicit Surface Modeling

Super-quadrics can represent a set of implicit surfaces, which can be used furthermore as primitive surfaces to construct a complex object via Boolean set operations in implicit surface modeling. In fact, super-quadrics were developed to create a parametric surface by performing spherical product on two parametric curves and some of the resulting parametric surfaces were also represented as implicit surfaces. However, because not every parametric curve can be redefined implicitly, this causes only implicit super-elliptic and super-hyperbolic curves are applied to perform spherical product and so only implicit super-ellipsoids and hyperboloids are developed in super-quadrics. To create implicit surfaces with more diverse shapes than super-quadrics, this paper proposes an implicit representation of spherical product, which performs spherical product on two implicit curves like super-quadrics do. By means of the implicit representation, many new implicit curves such as polygonal, star-shaped and rose-shaped curves can be used to develop new implicit surfaces with a greater variety of shapes than super-quadrics, such as polyhedrons, hyper-ellipsoids, superhyperboloids and hyper-toroids containing star-shaped and roseshaped major and minor circles. Besides, the newly developed implicit surfaces can also be used to define new primitive implicit surfaces for constructing a more complex implicit surface in implicit surface modeling.

Genetic Algorithm Application in a Dynamic PCB Assembly with Carryover Sequence- Dependent Setups

We consider a typical problem in the assembly of printed circuit boards (PCBs) in a two-machine flow shop system to simultaneously minimize the weighted sum of weighted tardiness and weighted flow time. The investigated problem is a group scheduling problem in which PCBs are assembled in groups and the interest is to find the best sequence of groups as well as the boards within each group to minimize the objective function value. The type of setup operation between any two board groups is characterized as carryover sequence-dependent setup time, which exactly matches with the real application of this problem. As a technical constraint, all of the boards must be kitted before the assembly operation starts (kitting operation) and by kitting staff. The main idea developed in this paper is to completely eliminate the role of kitting staff by assigning the task of kitting to the machine operator during the time he is idle which is referred to as integration of internal (machine) and external (kitting) setup times. Performing the kitting operation, which is a preparation process of the next set of boards while the other boards are currently being assembled, results in the boards to continuously enter the system or have dynamic arrival times. Consequently, a dynamic PCB assembly system is introduced for the first time in the assembly of PCBs, which also has characteristics similar to that of just-in-time manufacturing. The problem investigated is computationally very complex, meaning that finding the optimal solutions especially when the problem size gets larger is impossible. Thus, a heuristic based on Genetic Algorithm (GA) is employed. An example problem on the application of the GA developed is demonstrated and also numerical results of applying the GA on solving several instances are provided.

Diffusion Analysis of a Scalable Feistel Network

A generalization of the concepts of Feistel Networks (FN), known as Extended Feistel Network (EFN) is examined. EFN splits the input blocks into n > 2 sub-blocks. Like conventional FN, EFN consists of a series of rounds whereby at least one sub-block is subjected to an F function. The function plays a key role in the diffusion process due to its completeness property. It is also important to note that in EFN the F-function is the most computationally expensive operation in a round. The aim of this paper is to determine a suitable type of EFN for a scalable cipher. This is done by analyzing the threshold number of rounds for different types of EFN to achieve the completeness property as well as the number of F-function required in the network. The work focuses on EFN-Type I, Type II and Type III only. In the analysis it is found that EFN-Type II and Type III diffuses at the same rate and both are faster than Type-I EFN. Since EFN-Type-II uses less F functions as compared to EFN-Type III, therefore Type II is the most suitable EFN for use in a scalable cipher.

Backplane Serial Signaling and Protocol for Telecom Systems

In this paper, we implement a modern serial backplane platform for telecommunication inter-rack systems. For combination high reliability and low cost protocol property, we applied high level data link control (HDLC) protocol with low voltage differential signaling (LVDS) bus for card to card communicated over backplane. HDLC protocol is a high performance with several operation modes and is famous in telecommunication systems. LVDS bus is a high reliability with high immunity against electromagnetic interference (EMI) and noise.

A Novel Feedback-Based Integrated FiWi Networks Architecture by Centralized Interlink-ONU Communication

Integrated fiber-wireless (FiWi) access networks are a viable solution that can deliver the high profile quadruple play services. Passive optical networks (PON) networks integrated with wireless access networks provide ubiquitous characteristics for high bandwidth applications. Operation of PON improves by employing a variety of multiplexing techniques. One of it is time division/wavelength division multiplexed (TDM/WDM) architecture that improves the performance of optical-wireless access networks. This paper proposes a novel feedback-based TDM/WDM-PON architecture and introduces a model of integrated PON-FiWi networks. Feedback-based link architecture is an efficient solution to improves the performance of optical-line-terminal (OLT) and interlink optical-network-units (ONUs) communication. Furthermore, the feedback-based WDM/TDM-PON architecture is compared with existing architectures in terms of capacity of network throughput.

A Study of RSCMAC Enhanced GPS Dynamic Positioning

The purpose of this research is to develop and apply the RSCMAC to enhance the dynamic accuracy of Global Positioning System (GPS). GPS devices provide services of accurate positioning, speed detection and highly precise time standard for over 98% area on the earth. The overall operation of Global Positioning System includes 24 GPS satellites in space; signal transmission that includes 2 frequency carrier waves (Link 1 and Link 2) and 2 sets random telegraphic codes (C/A code and P code), on-earth monitoring stations or client GPS receivers. Only 4 satellites utilization, the client position and its elevation can be detected rapidly. The more receivable satellites, the more accurate position can be decoded. Currently, the standard positioning accuracy of the simplified GPS receiver is greatly increased, but due to affected by the error of satellite clock, the troposphere delay and the ionosphere delay, current measurement accuracy is in the level of 5~15m. In increasing the dynamic GPS positioning accuracy, most researchers mainly use inertial navigation system (INS) and installation of other sensors or maps for the assistance. This research utilizes the RSCMAC advantages of fast learning, learning convergence assurance, solving capability of time-related dynamic system problems with the static positioning calibration structure to improve and increase the GPS dynamic accuracy. The increasing of GPS dynamic positioning accuracy can be achieved by using RSCMAC system with GPS receivers collecting dynamic error data for the error prediction and follows by using the predicted error to correct the GPS dynamic positioning data. The ultimate purpose of this research is to improve the dynamic positioning error of cheap GPS receivers and the economic benefits will be enhanced while the accuracy is increased.

Risk Assessment Results in Biogas Production from Agriculture Biomass

The use of renewable energy sources incl. biogas has become topical in accordance with the increasing demand for energy, decrease of fossil energy resources and the efforts to reduce greenhouse gas emissions as well as to increase energy independence from the territories where fossil energy resources are available. As the technologies of biogas production from agricultural biomass develop, risk assessment and risk management become necessary for farms producing such a renewable energy. The need for risk assessments has become particularly topical when discussions on changing the biogas policy in the EU take place, which may influence the development of the sector in the future, as well as the operation of existing biogas facilities and their income level. The current article describes results of the risk assessment for farms producing biomass from agriculture biomass in Latvia, the risk assessment system included 24 risks, that affect the whole biogas production process and the obtained results showed the high significance of political and production risks.

Voice Driven Applications in Non-stationary and Chaotic Environment

Automated operations based on voice commands will become more and more important in many applications, including robotics, maintenance operations, etc. However, voice command recognition rates drop quite a lot under non-stationary and chaotic noise environments. In this paper, we tried to significantly improve the speech recognition rates under non-stationary noise environments. First, 298 Navy acronyms have been selected for automatic speech recognition. Data sets were collected under 4 types of noisy environments: factory, buccaneer jet, babble noise in a canteen, and destroyer. Within each noisy environment, 4 levels (5 dB, 15 dB, 25 dB, and clean) of Signal-to-Noise Ratio (SNR) were introduced to corrupt the speech. Second, a new algorithm to estimate speech or no speech regions has been developed, implemented, and evaluated. Third, extensive simulations were carried out. It was found that the combination of the new algorithm, the proper selection of language model and a customized training of the speech recognizer based on clean speech yielded very high recognition rates, which are between 80% and 90% for the four different noisy conditions. Fourth, extensive comparative studies have also been carried out.

Multirate Neural Control for AUV's Increased Situational Awareness during Diving Tasks Using Stochastic Model

This paper focuses on a critical component of the situational awareness (SA), the neural control of depth flight of an autonomous underwater vehicle (AUV). Constant depth flight is a challenging but important task for AUVs to achieve high level of autonomy under adverse conditions. With the SA strategy, we proposed a multirate neural control of an AUV trajectory for a nontrivial mid-small size AUV “r2D4" stochastic model. This control system has been demonstrated and evaluated by simulation of diving maneuvers using software package Simulink. From the simulation results it can be seen that the chosen AUV model is stable in the presence of noises, and also can be concluded that the proposed research technique will be useful for fast SA of similar AUV systems in real-time search-and-rescue operations.

Design, Analysis and Modeling of Dual Band Microstrip Loop Antenna Using Defective Ground Plane

Present wireless communication demands compact and intelligent devices with multitasking capabilities at affordable cost. The focus in the presented paper is on a dual band antenna for wireless communication with the capability of operating at two frequency bands with same structure. Two resonance frequencies are observed with the second operation band at 4.2GHz approximately three times the first resonance frequency at 1.5GHz. Structure is simple loop of microstrip line with characteristic impedance 50 ohms. The proposed antenna is designed using defective ground structure (DGS) and shows the nearly one third reductions in size as compared to without DGS. This antenna was simulated on electromagnetic (EM) simulation software and fabricated using microwave integrated circuit technique on RT-Duroid dielectric substrate (εr= 2.22) of thickness (H=15 mils). The designed antenna was tested on automatic network analyzer and shows the good agreement with simulated results. The proposed structure is modeled into an equivalent electrical circuit and simulated on circuit simulator. Subsequently, theoretical analysis was carried out and simulated. The simulated, measured, equivalent circuit response, and theoretical results shows good resemblance. The bands of operation draw many potential applications in today’s wireless communication.

Design Optimization of Cutting Parameters when Turning Inconel 718 with Cermet Inserts

Inconel 718, a nickel based super-alloy is an extensively used alloy, accounting for about 50% by weight of materials used in an aerospace engine, mainly in the gas turbine compartment. This is owing to their outstanding strength and oxidation resistance at elevated temperatures in excess of 5500 C. Machining is a requisite operation in the aircraft industries for the manufacture of the components especially for gas turbines. This paper is concerned with optimization of the surface roughness when turning Inconel 718 with cermet inserts. Optimization of turning operation is very useful to reduce cost and time for machining. The approach is based on Response Surface Method (RSM). In this work, second-order quadratic models are developed for surface roughness, considering the cutting speed, feed rate and depth of cut as the cutting parameters, using central composite design. The developed models are used to determine the optimum machining parameters. These optimized machining parameters are validated experimentally, and it is observed that the response values are in reasonable agreement with the predicted values.

Prediction of Coast Down Time for Mechanical Faults in Rotating Machinery Using Artificial Neural Networks

Misalignment and unbalance are the major concerns in rotating machinery. When the power supply to any rotating system is cutoff, the system begins to lose the momentum gained during sustained operation and finally comes to rest. The exact time period from when the power is cutoff until the rotor comes to rest is called Coast Down Time. The CDTs for different shaft cutoff speeds were recorded at various misalignment and unbalance conditions. The CDT reduction percentages were calculated for each fault and there is a specific correlation between the CDT reduction percentage and the severity of the fault. In this paper, radial basis network, a new generation of artificial neural networks, has been successfully incorporated for the prediction of CDT for misalignment and unbalance conditions. Radial basis network has been found to be successful in the prediction of CDT for mechanical faults in rotating machinery.

Analysis on the Decision-Making Model of Private Sector Companies in PPP Projects

Successful public-private-partnership (PPP) implementation can not be achieved without the active participation of private sector companies. This paper examines the decision-making of private sector companies in public works delivered by the PPP model on the basis of social responsibility theory. It proposes that private sector companies should indentify objectives of entering into PPP projects, and shoulder relevant social responsibilities, while a minimum return should also be guaranteed in their favor, so as to compensate for their assumed risk and support them to take on responsibilities in the future. The paper also gives a calculation regarding the appropriate scale and reasonable degree of private sector involvement in PPP projects through the cost-benefit analysis in a specific case study, with the purpose to guide the private sector companies to create a cooperation environment resembling “symbiosis" and facilitate the smooth implementation of public works delivered by the PPP model.

Curriculum of Ethical Education in Slovakia

Ethical Education is a compulsorily optional subject in primary and secondary schools. The Ethical Education objective is the education of a personality with one´s own identity, with interiorized ethical standards, with mature moral judgement and therefore with the behaviour determined by one´s own beliefs; with a positive attitude to himself/herself and other people and that is why he/she is able to cooperate and to initiate cooperation. In the paper we describe the contents and the principles of Ethical education. We also shows that Ethical education is subject supported primary socialpathological prevention and education to citizenship. In this context we try to show that ethical education contributes to the education of good people who are aware of the necessity to respect social norms and are able to assume responsibility for their own behaviour in any situation at present and in the future.

Ammonia Gas Removal from Gas Stream by Biofiltration using Agricultural Residue Biofilter Medias in Laboratory-scale Biofilter

In this research, a biofiltration process to remove ammonia gas from gas stream using agricultural residue biofilter medias is studied. The experiments were conducted in laboratoryscale biofilter. The biofilter medias were a mixture of manure fertilizer and bagasse at various ratios i.e., 1:3, 1:5 and 1:7. The experiments were performed for a period of 40 days. The empty bed retention time (EBRT) is 78s. The moisture content of biofilter media was maintained at 45-60% using water. The results showed that the agricultural residues (manure fertilizer and bagasse) are suitable as biofilter media for ammonia gas removal in biofiltration process. The maximum efficiency of ammonia gas removal is observed from the 1:5 of manure fertilizer: bagasse ratio at 89.93%. The biofiltration is more effective at low ammonia gas concentration. In addition, the mixture ratio of biofilter media is not a significant factor in biofiltration operation while the most significant factor for biofiltration operation is the inlet ammonia gas concentration.

Fuzzy Ideology based Long Term Load Forecasting

Fuzzy Load forecasting plays a paramount role in the operation and management of power systems. Accurate estimation of future power demands for various lead times facilitates the task of generating power reliably and economically. The forecasting of future loads for a relatively large lead time (months to few years) is studied here (long term load forecasting). Among the various techniques used in forecasting load, artificial intelligence techniques provide greater accuracy to the forecasts as compared to conventional techniques. Fuzzy Logic, a very robust artificial intelligent technique, is described in this paper to forecast load on long term basis. The paper gives a general algorithm to forecast long term load. The algorithm is an Extension of Short term load forecasting method to Long term load forecasting and concentrates not only on the forecast values of load but also on the errors incorporated into the forecast. Hence, by correcting the errors in the forecast, forecasts with very high accuracy have been achieved. The algorithm, in the paper, is demonstrated with the help of data collected for residential sector (LT2 (a) type load: Domestic consumers). Load, is determined for three consecutive years (from April-06 to March-09) in order to demonstrate the efficiency of the algorithm and to forecast for the next two years (from April-09 to March-11).

Simulation of Voltage Controlled Tunable All Pass Filter Using LM13700 OTA

In recent years Operational Transconductance Amplifier based high frequency integrated circuits, filters and systems have been widely investigated. The usefulness of OTAs over conventional OP-Amps in the design of both first order and second order active filters are well documented. This paper discusses some of the tunability issues using the Matlab/Simulink® software which are previously unreported for any commercial OTA. Using the simulation results two first order voltage controlled all pass filters with phase tuning capability are proposed.

Economic Assessment of Green House for Cultivation of Float Based Seedling Production in India

In conventional seedling production, the seedlings are being grown in the open field under natural conditions. Here they are susceptible to sudden changes in climate were their quality and yield is affected. Quality seedlings are essential for good growth and performance of crops in main field; they serve as a foundation for the economic returns to the farmer. Producing quality seedling demands usage of hybrid seeds as they have the ability to result in better yield, greater uniformity, improved color, disease resistance, and so forth. Hybrid seed production poses major operational challenge and its seed use efficiency plays an important role. Thus in order to overcome the difficulties currently present in conventional seedling production and to efficiently use hybrid seeds, ITC Limited Agri Business Divisions - Sustainability Cell as conceptualized a novel method of seedling production unit for farmers in West Godavari District of Andhra Pradesh. The “Green House based Float Seedling" methodology aims at a protected cultivation technique wherein the micro climate surrounding the plant/seedling body is controlled partially or fully as per the requirement of the species. This paper reports on the techno economic evaluation of green house for cultivation of float based seedling production with experimental results that was attained from the pilot implementation in West Godavari District, Rajahmundry region of India.

Flexible Workplaces Fostering Knowledge Workers Informal Learning: The Flexible Office Case

Organizations face challenges supporting knowledge workers due to their particular requirements for an environment supportive of their self-guided learning activities which are important to increase their productivity and to develop creative solutions to non-routine problems. Face-to-face knowledge sharing remains crucial in spite of a large number of knowledge management instruments that aim at supporting a more impersonal transfer of knowledge. This paper first describes the main criteria for a conceptual and technical solution targeted at flexible management of office space that aims at assigning those knowledge workers to the same room that are most likely to thrive when being brought together thus enhancing their knowledge work productivity. The paper reflects on lessons learned from the implementation and operation of such a solution in a project-focused organization and derives several implications for future extensions that target to foster problem solving, informal learning and personal development.

Multi-Objective Planning and Operation of Water Supply Systems Subject to Climate Change

Many water supply systems in Australia are currently undergoing significant reconfiguration due to reductions in long term average rainfall and resulting low inflows to water supply reservoirs since the second half of the 20th century. When water supply systems undergo change, it is necessary to develop new operating rules, which should consider climate, because the climate change is likely to further reduce inflows. In addition, water resource systems are increasingly intended to be operated to meet complex and multiple objectives representing social, economic, environmental and sustainability criteria. This is further complicated by conflicting preferences on these objectives from diverse stakeholders. This paper describes a methodology to develop optimum operating rules for complex multi-reservoir systems undergoing significant change, considering all of the above issues. The methodology is demonstrated using the Grampians water supply system in northwest Victoria, Australia. Initial work conducted on the project is also presented in this paper.