Key Based Text Watermarking of E-Text Documents in an Object Based Environment Using Z-Axis for Watermark Embedding

Data hiding into text documents itself involves pretty complexities due to the nature of text documents. A robust text watermarking scheme targeting an object based environment is presented in this research. The heart of the proposed solution describes the concept of watermarking an object based text document where each and every text string is entertained as a separate object having its own set of properties. Taking advantage of the z-ordering of objects watermark is applied with the z-axis letting zero fidelity disturbances to the text. Watermark sequence of bits generated against user key is hashed with selected properties of given document, to determine the bit sequence to embed. Bits are embedded along z-axis and the document has no fidelity issues when printed, scanned or photocopied.

Two-dimensional Analytical Drain Current Model for Multilayered-Gate Material Engineered Trapezoidal Recessed Channel(MLGME-TRC) MOSFET: a Novel Design

In this paper, for the first time, a two-dimensional (2D) analytical drain current model for sub-100 nm multi-layered gate material engineered trapezoidal recessed channel (MLGMETRC) MOSFET: a novel design is presented and investigated using ATLAS and DEVEDIT device simulators, to mitigate the large gate leakages and increased standby power consumption that arise due to continued scaling of SiO2-based gate dielectrics. The twodimensional (2D) analytical model based on solution of Poisson-s equation in cylindrical coordinates, utilizing the cylindrical approximation, has been developed which evaluate the surface potential, electric field, drain current, switching metric: ION/IOFF ratio and transconductance for the proposed design. A good agreement between the model predictions and device simulation results is obtained, verifying the accuracy of the proposed analytical model.

1−Skeleton Resolution of Free Simplicial Algebras with Given CW−Basis

In this paper we use the definition of CW basis of a free simplicial algebra. Using the free simplicial algebra, it is shown to construct free or totally free 2−crossed modules on suitable construction data with given a CW−basis of the free simplicial algebra. We give applications free crossed squares, free squared complexes and free 2−crossed complexes by using of 1(one) skeleton resolution of a step by step construction of the free simplicial algebra with a given CW−basis.

Impact of a Proposed Pier on Tidal Currents:Koa Kood Island, Thailand

The impact of a proposed pier on tidal current alteration was evaluated. The proposed pier location was in Salad Bay on Koa Kood Island, Trat province, Thailand, and was designed to accommodate passenger ships with a draft of less than 2 m. The study began with collecting necessary data, including bathymetric, water elevation and tidal current characteristics. The impact was assessed using a software package (MIKE21). Although the results showed that the pier would affect the existing current pattern, the change was determined to be insignificant, as the design of the piles for the pier provided sufficient spacing to let the current flow as freely as possible. Consequences of the altered current, such as seabed erosion, water stagnation, sediment deposition and navigational risk were assessed. Environmental mitigation measures might be necessary if the impacts were considered unacceptable.

Hydrodynamic Force on Acoustically Driven Bubble in Sulfuric Acid

Using a force balanced translational-radial dynamics, phase space of the moving single bubble sonoluminescence (m- SBSL) in 85% wt sulfuric acid has been numerically calculated. This phase space is compared with that of single bubble sonoluminescence (SBSL) in pure water which has been calculated by using the mere radial dynamics. It is shown that in 85% wt sulfuric acid, in a general agreement with experiment, the bubble-s positional instability threshold lays under the shape instability threshold. At the onset of spatial instability of moving sonoluminescing (SL) bubble in 85% wt sulfuric acid, temporal effects of the hydrodynamic force on the bubble translational-radial dynamics have been investigated. The appearance of non-zero history force on the moving SL bubble is because of proper condition which was produced by high viscosity of acid. Around the moving bubble collapse due to the rapid contraction of the bubble wall, the inertial based added mass force overcomes the viscous based history force and induces acceleration on the bubble translational motion.

Distributed Case Based Reasoning for Intelligent Tutoring System: An Agent Based Student Modeling Paradigm

Online learning with Intelligent Tutoring System (ITS) is becoming very popular where the system models the student-s learning behavior and presents to the student the learning material (content, questions-answers, assignments) accordingly. In today-s distributed computing environment, the tutoring system can take advantage of networking to utilize the model for a student for students from other similar groups. In the present paper we present a methodology where using Case Based Reasoning (CBR), ITS provides student modeling for online learning in a distributed environment with the help of agents. The paper describes the approach, the architecture, and the agent characteristics for such system. This concept can be deployed to develop ITS where the tutor can author and the students can learn locally whereas the ITS can model the students- learning globally in a distributed environment. The advantage of such an approach is that both the learning material (domain knowledge) and student model can be globally distributed thus enhancing the efficiency of ITS with reducing the bandwidth requirement and complexity of the system.

Effect of Herbicides on Narrow Leaved Weeds and Yield of Wheat (Triticum aestivum L.)

This study was conducted to investigate the efficacy of five herbicides on narrow leaved weeds and growth and yield of wheat. An experiment was conducted at Agronomic Research Farm, University of Agriculture Faisalabad. The experiment was laid out in randomized complete block designee (RCBD) with three replications. Treatments studied were clodinafop (Topic-15 WG) at 37 g a.i. ha-1, clodinafop (Topaz-15 WG) at 45 g a.i. ha-1, fenoxaprop-p-ethyl (Puma Super-75 EW) at 45 g a.i. ha-1, fenoxaprop-p-ethyl (Gramicide-6.9 EW) at 85 g a.i. ha-1, fenoxaprop-p-ethyl (Chinlima-6.9 EW) at 85 g a.i. ha-1 and weedy check. Plots treated with fenoxaprop-p-ethyl (Puma Super-75 EW) at 45 g a.i. ha-1 produced relatively less weed biomass, more plant height, number of spike bearing tillers, number of grains per spike, 1000-grain weight and grain yield (4.20 t ha-1).

Method for Determining the Probing Points for Efficient Measurement of Freeform Surface

In inspection and workpiece localization, sampling point data is an important issue. Since the devices for sampling only sample discrete points, not the completely surface, sampling size and location of the points will be taken into consideration. In this paper a method is presented for determining the sampled points size and location for achieving efficient sampling. Firstly, uncertainty analysis of the localization parameters is investigated. A localization uncertainty model is developed to predict the uncertainty of the localization process. Using this model the minimum size of the sampled points is predicted. Secondly, based on the algebra theory an eigenvalue-optimal optimization is proposed. Then a freeform surface is used in the simulation. The proposed optimization is implemented. The simulation result shows its effectivity.

Target Detection with Improved Image Texture Feature Coding Method and Support Vector Machine

An image texture analysis and target recognition approach of using an improved image texture feature coding method (TFCM) and Support Vector Machine (SVM) for target detection is presented. With our proposed target detection framework, targets of interest can be detected accurately. Cascade-Sliding-Window technique was also developed for automated target localization. Application to mammogram showed that over 88% of normal mammograms and 80% of abnormal mammograms can be correctly identified. The approach was also successfully applied to Synthetic Aperture Radar (SAR) and Ground Penetrating Radar (GPR) images for target detection.

Effect of Increasing Road Light Luminance on Night Driving Performance of Older Adults

The main objective of this study was to determine if a minimal increase in road light level (luminance) could lead to improved driving performance among older adults. Older, middleaged and younger adults were tested in a driving simulator following vision and cognitive screening. Comparisons were made for the performance of simulated night driving under two road light conditions (0.6 and 2.5 cd/m2). At each light level, the effects of self reported night driving avoidance were examined along with the vision/cognitive performance. It was found that increasing road light level from 0.6 cd/m2 to 2.5 cd/m2 resulted in improved recognition of signage on straight highway segments. The improvement depends on different driver-related factors such as vision and cognitive abilities, and confidence. On curved road sections, the results showed that driver-s performance worsened. It is concluded that while increasing road lighting may be helpful to older adults especially for sign recognition, it may also result in increased driving confidence and thus reduced attention in some driving situations.

An Improved Fast Video Clip Search Algorithm for Copy Detection using Histogram-based Features

In this paper, we present an improved fast and robust search algorithm for copy detection using histogram-based features for short MPEG video clips from large video database. There are two types of histogram features used to generate more robust features. The first one is based on the adjacent pixel intensity difference quantization (APIDQ) algorithm, which had been reliably applied to human face recognition previously. An APIDQ histogram is utilized as the feature vector of the frame image. Another one is ordinal histogram feature which is robust to color distortion. Furthermore, by Combining with a temporal division method, the spatial and temporal features of the video sequence are integrated to realize fast and robust video search for copy detection. Experimental results show the proposed algorithm can detect the similar video clip more accurately and robust than conventional fast video search algorithm.

Effect of Valve Pressure Drop in Exergy Analysis of C2+ Recovery Plants Refrigeration Cycles

This paper provides an exergy analysis of the multistage refrigeration cycle used for C2+ recovery plant. The behavior of an industrial refrigeration cycle with refrigerant propane has been investigated by the exergy method. A computational model based on the exergy analysis is presented for the investigation of the effects of the valves on the exergy losses, the second law of efficiency, and the coefficient of performance (COP) of a vapor compression refrigeration cycle. The equations of exergy destruction and exergetic efficiency for the main cycle components such as evaporators, condensers, compressors, and expansion valves are developed. The relations for the total exergy destruction in the cycle and the cycle exergetic efficiency are obtained. An ethane recovery unit with its refrigeration cycle has been simulated to prepare the exergy analysis. Using a typical actual work input value; the exergetic efficiency of the refrigeration cycle is determined to be 39.90% indicating a great potential for improvements. The simulation results reveal that the exergetic efficiencies of the heat exchanger and expansion sections get the lowest rank among the other compartments of refrigeration cycle. Refrigeration calculations have been carried out through the analysis of T–S and P–H diagrams where coefficient of performance (COP) was obtained as 1.85. The novelty of this article includes the effect and sensitivity analysis of molar flow, pressure drops and temperature on the exergy efficiency and coefficient of performance of the cycle.

Removal of Ciprofloxazin and Carbamazepine by Adsorption on Functionalized Mesoporous Silicates

Ciprofloxacin (CIP) and Carbamazepine (CBZ), nonbiodegradable pharmaceutical residues, were become emerging pollutants in several aquatic environments. The objectives of this research were to study the possibility to recover these pharmaceuticals residues from pharmaceutical wastewater by increasing the selective adsorption on synthesized functionalized porous silicate, comparing with powdered activated carbon (PAC). Hexagonal mesoporous silicate (HMS), functionalized HMSs (3- aminopropyltriethoxy, 3- mercaptopropyltrimethoxy and noctyldimethyl) were synthesized and characterized physico-chemical characteristics. Obtained adsorption kinetics and isotherms showed that 3-mercaptopropyltrimethoxy functional groups grafted on HMS provided highest CIP and CBZ adsorption capacities; however, it was still lower than that of PAC. The kinetic results were compatible with pseudo-second order. The hydrophobicity and hydrogen bonding might play a key role on the adsorption. Furthermore, the capacities were affected by varying pH values due to the strength of hydrogen bonding between targeted compounds and adsorbents. Electrostatic interaction might not affect the adsorption capacities.

2D-Modeling with Lego Mindstorms

The whole work is based on possibility to use Lego Mindstorms robotics systems to reduce costs. Lego Mindstorms consists of a wide variety of hardware components necessary to simulate, programme and test of robotics systems in practice. To programme algorithm, which simulates space using the ultrasonic sensor, was used development environment supplied with kit. Software Matlab was used to render values afterwards they were measured by ultrasonic sensor. The algorithm created for this paper uses theoretical knowledge from area of signal processing. Data being processed by algorithm are collected by ultrasonic sensor that scans 2D space in front of it. Ultrasonic sensor is placed on moving arm of robot which provides horizontal moving of sensor. Vertical movement of sensor is provided by wheel drive. The robot follows map in order to get correct positioning of measured data. Based on discovered facts it is possible to consider Lego Mindstorm for low-cost and capable kit for real-time modelling.

Effect of a Magnetic Field on the Onset of Marangoni Convection in a Micropolar Fluid

With the presence of a uniform vertical magnetic field and suspended particles, thermocapillary instability in a horizontal liquid layer is investigated. The resulting eigenvalue is solved by the Galerkin technique for various basic temperature gradients. It is found that the presence of magnetic field always has a stability effect of increasing the critical Marangoni number.

Complex-Valued Neural Network in Image Recognition: A Study on the Effectiveness of Radial Basis Function

A complex valued neural network is a neural network, which consists of complex valued input and/or weights and/or thresholds and/or activation functions. Complex-valued neural networks have been widening the scope of applications not only in electronics and informatics, but also in social systems. One of the most important applications of the complex valued neural network is in image and vision processing. In Neural networks, radial basis functions are often used for interpolation in multidimensional space. A Radial Basis function is a function, which has built into it a distance criterion with respect to a centre. Radial basis functions have often been applied in the area of neural networks where they may be used as a replacement for the sigmoid hidden layer transfer characteristic in multi-layer perceptron. This paper aims to present exhaustive results of using RBF units in a complex-valued neural network model that uses the back-propagation algorithm (called 'Complex-BP') for learning. Our experiments results demonstrate the effectiveness of a Radial basis function in a complex valued neural network in image recognition over a real valued neural network. We have studied and stated various observations like effect of learning rates, ranges of the initial weights randomly selected, error functions used and number of iterations for the convergence of error on a neural network model with RBF units. Some inherent properties of this complex back propagation algorithm are also studied and discussed.

A Soft Set based Group Decision Making Method with Criteria Weight

Molodstov-s soft sets theory was originally proposed as general mathematical tool for dealing with uncertainty problems. The matrix form has been introduced in soft set and some of its properties have been discussed. However, the formulation of soft matrix in group decision making problem only with equal importance weights of criteria, which does not show the true opinion of decision maker on each criteria. The aim of this paper is to propose a method for solving group decision making problem incorporating the importance of criteria by using soft matrices in a more objective manner. The weight of each criterion is calculated by using the Analytic Hierarchy Process (AHP) method. An example of house selection process is given to illustrate the effectiveness of the proposed method.

Speech Encryption and Decryption Using Linear Feedback Shift Register (LFSR)

This paper is taken into consideration the problem of cryptanalysis of stream ciphers. There is some attempts need to improve the existing attacks on stream cipher and to make an attempt to distinguish the portions of cipher text obtained by the encryption of plain text in which some parts of the text are random and the rest are non-random. This paper presents a tutorial introduction to symmetric cryptography. The basic information theoretic and computational properties of classic and modern cryptographic systems are presented, followed by an examination of the application of cryptography to the security of VoIP system in computer networks using LFSR algorithm. The implementation program will be developed Java 2. LFSR algorithm is appropriate for the encryption and decryption of online streaming data, e.g. VoIP (voice chatting over IP). This paper is implemented the encryption module of speech signals to cipher text and decryption module of cipher text to speech signals.

Synthesis and Properties of Biobased Polyurethane/Montmorillonite Nanocomposites

Polyurethanes (PURs) are very versatile polymeric materials with a wide range of physical and chemical properties. PURs have desirable properties such as high abrasion resistance, tear strength, shock absorption, flexibility and elasticity. Although they have relatively poor thermal stability, this can be improved by using treated clay. Polyurethane/clay nanocomposites have been synthesized from renewable sources. A polyol for the production of polyurethane by reaction with an isocyanate was obtained by the synthesis of palm oil-based oleic acid with glycerol. Dodecylbenzene sulfonic acid (DBSA) was used as catalyst and emulsifier. The unmodified clay (kunipia-F) was treated with cetyltrimethyl ammonium bromide (CTAB-mont) and octadodecylamine (ODAmont). The d-spacing in CTAB-mont and ODA-mont were 1.571 nm and 1.798 nm respectively and larger than that of the pure-mont (1.142 nm). The organoclay was completely intercalated in the polyurethane, as confirmed by a wide angle x-ray diffraction (WAXD) pattern. The results showed that adding clay demonstrated better thermal stability in comparison with the virgin polyurethane. Onset degradation of pure PU is at 200oC, and is lower than that of the CTAB-mont PU and ODA-mont PU which takes place at about 318oC and 330oC, respectively. The mechanical properties (including the dynamic mechanical properties) of pure polyurethane (PU) and PU/clay nanocomposites, were measured. The modified organoclay had a remarkably beneficial effect on the strength and elongation at break of the nanocomposites, which both increased with increasing clay content with the increase of the tensile strength of more than 214% and 267% by the addition of only 5 wt% of the montmorillonite CTAB-mont PU and ODA-mont PU, respectively.

A Novel Low Power Digitally Controlled Oscillator with Improved linear Operating Range

In this paper, an ultra low power and low jitter 12bit CMOS digitally controlled oscillator (DCO) design is presented. Based on a ring oscillator implemented with low power Schmitt trigger based inverters. Simulation of the proposed DCO using 32nm CMOS Predictive Transistor Model (PTM) achieves controllable frequency range of 550MHz~830MHz with a wide linearity and high resolution. Monte Carlo simulation demonstrates that the time-period jitter due to random power supply fluctuation is under 31ps and the power consumption is 0.5677mW at 750MHz with 1.2V power supply and 0.53-ps resolution. The proposed DCO has a good robustness to voltage and temperature variations and better linearity comparing to the conventional design.