The Establishment of Probabilistic Risk Assessment Analysis Methodology for Dry Storage Concrete Casks Using SAPHIRE 8

To understand the risk for dry storage concrete casks in the cask loading, transfer, and storage phase, the purpose of this research is to establish the probabilistic risk assessment (PRA) analysis methodology for dry storage concrete casks by using SAPHIRE 8 code. This analysis methodology is used to perform the study of Taiwan nuclear power plants (NPPs) dry storage system. The process of research has three steps. First, the data of the concrete casks and Taiwan NPPs are collected. Second, the PRA analysis methodology is developed by using SAPHIRE 8. Third, the PRA analysis is performed by using this methodology. According to the analysis results, the maximum risk is the multipurpose canister (MPC) drop case.

Effect of Shear Wall Openings on the Fundamental Period of Shear Wall Structures

A common approach in resisting lateral forces is the use of reinforced concrete shear walls in buildings. These walls represent the main elements to resist the lateral forces due to their large strength and stiffness. However, such walls may contain many openings due to functional requirements, and this may largely affect the overall lateral stiffness of them. It is thus of prime importance to quantify the effect of openings on the dynamic performance of the shear walls. SAP2000 structural analysis program is used as a main source after verifying the results. This study is made by using linear elastic analysis. The results are compared to ASCE7-16 code empirical equations for estimating the fundamental period of shear wall structures. Finally, statistical regression is used to fit an equation for estimating the increase in the fundamental period of shear-walled regular structures due to windows openings in the walls.

Data Recording for Remote Monitoring of Autonomous Vehicles

Autonomous vehicles offer the possibility of significant benefits to social welfare. However, fully automated cars might not be going to happen in the near further. To speed the adoption of the self-driving technologies, many governments worldwide are passing laws requiring data recorders for the testing of autonomous vehicles. Currently, the self-driving vehicle, (e.g., shuttle bus) has to be monitored from a remote control center. When an autonomous vehicle encounters an unexpected driving environment, such as road construction or an obstruction, it should request assistance from a remote operator. Nevertheless, large amounts of data, including images, radar and lidar data, etc., have to be transmitted from the vehicle to the remote center. Therefore, this paper proposes a data compression method of in-vehicle networks for remote monitoring of autonomous vehicles. Firstly, the time-series data are rearranged into a multi-dimensional signal space. Upon the arrival, for controller area networks (CAN), the new data are mapped onto a time-data two-dimensional space associated with the specific CAN identity. Secondly, the data are sampled based on differential sampling. Finally, the whole set of data are encoded using existing algorithms such as Huffman, arithmetic and codebook encoding methods. To evaluate system performance, the proposed method was deployed on an in-house built autonomous vehicle. The testing results show that the amount of data can be reduced as much as 1/7 compared to the raw data.

Visualizing Imaging Pathways after Anatomy-Specific Follow-Up Imaging Recommendations

Radiologists routinely make follow-up imaging recommendations, usually based on established clinical practice guidelines, such as the Fleischner Society guidelines for managing lung nodules. In order to ensure optimal care, it is important to make guideline-compliant recommendations, and also for patients to follow-up on these imaging recommendations in a timely manner. However, determining such compliance rates after a specific finding has been observed usually requires many time-consuming manual steps. To address some of these limitations with current approaches, in this paper we discuss a methodology to automatically detect finding-specific follow-up recommendations from radiology reports and create a visualization for relevant subsequent exams showing the modality transitions. Nearly 5% of patients who had a lung related follow-up recommendation continued to have at least eight subsequent outpatient CT exams during a seven year period following the recommendation. Radiologist and section chiefs can use the proposed tool to better understand how a specific patient population is being managed, identify possible deviations from established guideline recommendations and have a patient-specific graphical representation of the imaging pathways for an abstract view of the overall treatment path thus far.

Forecasting Issues in Energy Markets within a Reg-ARIMA Framework

Electricity markets throughout the world have undergone substantial changes. Accurate, reliable, clear and comprehensible modeling and forecasting of different variables (loads and prices in the first instance) have achieved increasing importance. In this paper, we describe the actual state of the art focusing on reg-SARMA methods, which have proven to be flexible enough to accommodate the electricity price/load behavior satisfactory. More specifically, we will discuss: 1) The dichotomy between point and interval forecasts; 2) The difficult choice between stochastic (e.g. climatic variation) and non-deterministic predictors (e.g. calendar variables); 3) The confrontation between modelling a single aggregate time series or creating separated and potentially different models of sub-series. The noteworthy point that we would like to make it emerge is that prices and loads require different approaches that appear irreconcilable even though must be made reconcilable for the interests and activities of energy companies.

Optimal Distributed Generator Sizing and Placement by Analytical Method and PSO Algorithm Considering Optimal Reactive Power Dispatch

In this paper, an approach combining analytical method for the distributed generator (DG) sizing and meta-heuristic search for the optimal location of DG has been presented. The optimal size of DG on each bus is estimated by the loss sensitivity factor method while the optimal sites are determined by Particle Swarm Optimization (PSO) based optimal reactive power dispatch for minimizing active power loss. To confirm the proposed approach, it has been tested on IEEE-30 bus test system. The adjustments of operating constraints and voltage profile improvements have also been observed. The obtained results show that the allocation of DGs results in a significant loss reduction with good voltage profiles and the combined approach is competent in keeping the system voltages within the acceptable limits.

A Recommendation to Oncologists for Cancer Treatment by Immunotherapy: Quantitative and Qualitative Analysis

Today, the treatment of cancer, in a relatively short period, with minimum adverse effects is a great concern for oncologists. In this paper, based on a recently used mathematical model for cancer, a guideline has been proposed for the amount and duration of drug doses for cancer treatment by immunotherapy. Dynamically speaking, the mathematical ordinary differential equation (ODE) model of cancer has different equilibrium points; one of them is unstable, which is called the no tumor equilibrium point. In this paper, based on the number of tumor cells an intelligent soft computing controller (a combination of fuzzy logic controller and genetic algorithm), decides regarding the amount and duration of drug doses, to eliminate the tumor cells and stabilize the unstable point in a relatively short time. Two different immunotherapy approaches; active and adoptive, have been studied and presented. It is shown that the rate of decay of tumor cells is faster and the doses of drug are lower in comparison with the result of some other literatures. It is also shown that the period of treatment and the doses of drug in adoptive immunotherapy are significantly less than the active method. A recommendation to oncologists has also been presented.

A Small-Scale Flexible Test Bench for the Investigation of Fertigation Strategies in Soilless Culture

In soilless culture, the management of the nutrient solution is the most important aspect for crop growing. Fertigation dose, frequency and nutrient concentration must be planned with the objective of reaching an optimal crop growth by limiting the utilized resources and the associated costs. The definition of efficient fertigation strategies is a complex problem since fertigation requirements vary on the basis of different factors, and crops are sensitive to small variations on fertigation parameters. To the best of author knowledge, a small-scale test bench that is flexible for both nutrient solution preparation and precise irrigation is currently missing, limiting the investigations in standard practices for soilless culture. Starting from the analysis of the state of the art, this paper proposes a small-scale system that is potentially able to concurrently test different fertigation strategies. The system will be designed and implemented throughout a three year project started on August 2018. However, due to the importance of the topic within current challenges as food security and climate change, this work is spread considering that may inspire other universities and organizations.

Synthesis, Characterization and Antibacterial Screening of 3-Hydroxy-2-[3-(2/3/4-Methoxybenzoyl)Thioureido]Butyric Acid

This study presents the synthesis of a series of methoxybenzoylthiourea amino acid derivatives. The compounds were obtained from the reactions between 2/3/4-methoxybenzoyl isothiocyanate with threonine. All of the compounds were characterized via mass spectrometry, 1H and 13C NMR spectrometry, UV-Vis spectrophotometer and FT-IR spectroscopy. Mass spectra for all of the compounds showed the presence of molecular ion [M]+ peaks at m/z 312, which are in agreement to the calculated molecular weight. For 1H NMR spectra, the presence of OCH3, C=S-NH and C=O-NH protons were observed within range of δH 3.8-4.0 ppm, 11.1-11.5 ppm and 10.0-11.5 ppm, respectively. 13C NMR spectra in all compounds displayed the presence of OCH3, C=O-NH, C=O-OH and C=S carbon resonances within range of δC 55.0-57.0 ppm, 165.0-168.0 ppm, 170.0-171.0 ppm and 180.0-182.0 ppm, respectively. In UV spectra, two absorption bands have been observed and both were assigned to the n-π* and π-π* transitions. Six vibrational modes of v(N-H), v(O-H), v(C=O-OH), v(C=O-NH), v(C=C) aromatic and v(C=S) appeared in the FT-IR spectra within the range of 3241-3467 cm-1, 2976-3302 cm-1, 1720-1768 cm-1, 1655-1672 cm-1, 1519-1525 cm-1 and 754-763 cm-1, respectively. The antibacterial activity for all of the compounds was screened against Staphylococcus aureus, Staphylococcus epidermidis, Salmonella typhimurium and Escherichia coli. However, no activity was observed.

Students’ Perceptions of the Use of Social Media in Higher Education in Saudi Arabia

This paper examined the attitudes of using social media tools to support learning at a university in Saudi Arabia. Moreover, it investigated the students’ current usage of these tools and examined the barriers they could face during the use of social media tools in the education process. Participants in this study were 42 university students. A web-based survey was used to collect data for this study. The results indicate that all of the students were familiar with social media and had used at least one type of social media for learning. It was found out that all students had very positive attitudes towards the use of social media and welcomed using these tools as a supplementary to the curriculum. However, the results indicated that the major barriers to using these tools in learning were distraction, opposing Islamic religious teachings, privacy issues, and cyberbullying. The study recommended that this study could be replicated at other Saudi universities to investigate factors and barriers that might affect Saudi students’ attitudes toward using social media to support learning.

Identification of Social Responsibility Factors within Mega Construction Projects

Mega construction projects create buildings and major infrastructure to respond to work and life requirements while playing a vital role in promoting any nation’s economy. However, the industry is often criticised for not balancing economic, environmental and social dimensions of their projects, with emphasis typically on one aspect to the detriment of the others. This has resulted in many negative impacts including environmental pollution, waste throughout the project lifecycle, low productivity, and avoidable accidents. The identification of comprehensive Social Responsibility (SR) indicators, which combine social, environmental and economic aspects, is urgently needed. This is particularly the case in the context of the Kingdom of Saudi Arabia (KSA), which often has mega public construction projects. The aim of this paper is to develop a set of wide-ranging SR indicators which encompass social, economic and environmental aspects unique to the KSA. A qualitative approach was applied to explore relevant indicators through a review of the existing literature, international standards and reports. A list of appropriate indicators was developed, and its comprehensiveness was corroborated by interviews with experts on mega construction projects working with SR concepts in the KSA. The findings present 39 indicators and their metrics, covering 10 economic, 12 environmental and 17 social aspects of SR mapped against their references. These indicators are a valuable reference for decision-makers and academics in the KSA to understand factors related to SR in mega construction projects. The indicators are related to mega construction projects within the KSA and require validation in a real case scenario or within a different industry to demonstrate their generalisability.

A Mixed Method Investigation of the Impact of Practicum Experience on Mathematics Female Pre-Service Teachers’ Sense of Preparedness

The practicum experience is a critical component of any initial teacher education (ITE) course. As well as providing a near authentic setting for pre-service teachers (PSTs) to practice in, it also plays a key role in shaping their perceptions and sense of preparedness. Nevertheless, merely including a practicum period as a compulsory part of ITE may not in itself be enough to induce feelings of preparedness and efficacy; the quality of the classroom experience must also be considered. Drawing on findings of a larger study of secondary and intermediate level mathematics PSTs’ sense of preparedness to teach, this paper examines the influence of the practicum experience in particular. The study sample comprised female mathematics PSTs who had almost completed their teaching methods course in their fourth year of ITE across 16 teacher education programs in Saudi Arabia. The impact of the practicum experience on PSTs’ sense of preparedness was investigated via a mixed-methods approach combining a survey (N = 105) and in-depth interviews with survey volunteers (N = 16). Statistical analysis in SPSS was used to explore the quantitative data, and thematic analysis was applied to the qualitative interviews data. The results revealed that the PSTs perceived the practicum experience to have played a dominant role in shaping their feelings of preparedness and efficacy. However, despite the generally positive influence of practicum, the PSTs also reported numerous challenges that lessened their feelings of preparedness. These challenges were often related to the classroom environment and the school culture. For example, about half of the PSTs indicated that the practicum schools did not have the resources available or the support necessary to help them learn the work of teaching. In particular, the PSTs expressed concerns about translating the theoretical knowledge learned at the university into practice in authentic classrooms. These challenges engendered PSTs feeling less prepared and suggest that more support from both the university and the school is needed to help PSTs develop a stronger sense of preparedness. The area in which PSTs felt least prepared was that of classroom and behavior management, although the results also indicated that PSTs only felt a moderate level of general teaching efficacy and were less confident about how to support students as learners. Again, feelings of lower efficacy were related to the dissonance between the theory presented at university and real-world classroom practice. In order to close this gap between theory and practice, PSTs expressed the wish to have more time in the practicum, and more accountability for support from school-based mentors. In highlighting the challenges of the practicum in shaping PSTs’ sense of preparedness and efficacy, the study argues that better communication between the ITE providers and the practicum schools is necessary in order to maximize the benefit of the practicum experience.

Automatic Thresholding for Data Gap Detection for a Set of Sensors in Instrumented Buildings

Building systems are highly vulnerable to different kinds of faults and failures. In fact, various faults, failures and human behaviors could affect the building performance. This paper tackles the detection of unreliable sensors in buildings. Different literature surveys on diagnosis techniques for sensor grids in buildings have been published but all of them treat only bias and outliers. Occurences of data gaps have also not been given an adequate span of attention in the academia. The proposed methodology comprises the automatic thresholding for data gap detection for a set of heterogeneous sensors in instrumented buildings. Sensor measurements are considered to be regular time series. However, in reality, sensor values are not uniformly sampled. So, the issue to solve is from which delay each sensor become faulty? The use of time series is required for detection of abnormalities on the delays. The efficiency of the method is evaluated on measurements obtained from a real power plant: an office at Grenoble Institute of technology equipped by 30 sensors.

Modeling of Water Erosion in the M'Goun Watershed Using OpenGIS Software

Water erosion is the major cause of the erosion that shapes the earth's surface. Modeling water erosion requires the use of software and GIS programs, commercial or closed source. The very high prices for commercial GIS licenses, motivates users and researchers to find open source software as relevant and applicable as the proprietary GIS. The objective of this study is the modeling of water erosion and the hydrogeological and morphophysical characterization of the Oued M'Goun watershed (southern flank of the Central High Atlas) developed by free programs of GIS. The very pertinent results are obtained by executing tasks and algorithms in a simple and easy way. Thus, the various geoscientific and geostatistical analyzes of a digital elevation model (SRTM 30 m resolution) and their combination with the treatments and interpretation of satellite imagery information allowed us to characterize the region studied and to map the area most vulnerable to water erosion.

Gender and Advertisements: A Content Analysis of Pakistani Prime Time Advertisements

Advertisements carry a great potential to influence our lives because they are crafted to meet particular ends. Stereotypical representation in advertisements is capable of forming unconscious attitudes among people towards any gender and their abilities. This study focuses on gender representation in Pakistani prime time advertisements. For this purpose, 13 advertisements were selected from three different categories of foods and beverages, cosmetics, cell phones and cellular networks from the prime time slots of one of the leading Pakistani entertainment channel, ‘Urdu 1’. Both quantitative and qualitative analyses are carried out for range of variables like gender, age, roles, activities, setting, appearance and voice overs. The results revealed that gender representation in advertisements is stereotypical. Moreover, in few instances, the portrayal of women is not only culturally inappropriate but is demeaning to the image of women as well. Their bodily charm is used to promote products. Comparing different entertainment channels for their prime time advertisements and broadening the scope of this research will yield greater implications for the researchers who want to carry out the similar research. It is hoped that the current study would help in the promotion of media literacy among the viewers and media authorities in Pakistan.

Using ALOHA Code to Evaluate CO2 Concentration for Maanshan Nuclear Power Plant

ALOHA code was used to calculate the concentration under the CO2 storage burst condition for Maanshan nuclear power plant (NPP) in this study. Five main data are input into ALOHA code including location, building, chemical, atmospheric, and source data. The data from Final Safety Analysis Report (FSAR) and some reports were used in this study. The ALOHA results are compared with the failure criteria of R.G. 1.78 to confirm the habitability of control room. The result of comparison presents that the ALOHA result is below the R.G. 1.78 criteria. This implies that the habitability of control room can be maintained in this case. The sensitivity study for atmospheric parameters was performed in this study. The results show that the wind speed has the larger effect in the concentration calculation.

Effect of Vitamin D3 on Polycystic Ovary Syndrome Prognosis, Anthropometric and Body Composition Parameters of Overweight Women: A Randomized, Placebo-Controlled Clinical Trial

Vitamin D deficiency and overweight are common in women suffering from polycystic ovary syndrome (PCOS). Weight gain in PCOS is an important factor for the development of menstrual dysfunction and signs of hyperandrogenism and alopecia. Features of PCOS such as oligomenorrhea can be predicted by anthropometric measurements as body mass index (BMI). Therefore, the aim of this trial was to study the effect of 50,000 IU/week of vitamin D₃ supplementation on the body composition and on the anthropometric measurements of overweight women with PCOS and to examine the impact of this effect on ovaries ultrasonography and menstrual cycle regularity. The study design was a prospective randomized, double-blinded placebo-controlled clinical trial conducted on 60 overweight Jordanian women aged (18-49) years with PCOS and vitamin D deficiency. The study participants were divided into two groups; vitamin D group (n = 30) who were assigned to receive 50,000 IU/week of vitamin D₃ and placebo group (n = 30) who were assigned to receive placebo tablets orally for 90 days. The anthropometric measurements and body composition were measured at baseline and after treatment for the PCOS and vitamin D deficient women. Also, assessment of the participants’ picture of ovaries by ultrasound and menstrual cycle regulatory were performed before and after treatment. Results showed that there were no significant (p > 0.05) differences between the placebo and vitamin D group basal 25(OH)D levels, body composition and anthropometric parameters. After treatment, vitamin D group serum levels of 25(OH)D increased (12.5 ± 0.61 to 50.2 ± 2.04 ng/mL, (p < 0.001), and decreased (50.2 ± 2.04 to 48.2 ± 2.03 ng/mL, p < 0.001) after 14 days of vitamin D₃ treatment cessation. There were no significant changes in the placebo group. In the vitamin D group, there were significant (p < 0.001) decreases in body weight, BMI, waist, and hip circumferences and fat mass. In addition, there were significant increases (p < 0.05) in fat free mass and total body water. These improvements in both anthropometric and body composition as well as in 25(OH)D concentrations, resulted in significant improvements in the picture of PCOS women ovaries ultrasonography and in menstrual cycle regularity, where nearly most of them (93%) had regular cycles after vitamin D₃ supplementation. In the placebo group, there were only significant decreases (p < 0.05) in waist and hip circumferences. It can be concluded that vitamin D supplementation improving serum 25(OH)D levels and PCOS prognosis by reducing body weight of overweight PCOS women and regulating their menstrual cycle.

An Intelligent Scheme Switching for MIMO Systems Using Fuzzy Logic Technique

Link adaptation is an important strategy for achieving robust wireless multimedia communications based on quality of service (QoS) demand. Scheme switching in multiple-input multiple-output (MIMO) systems is an aspect of link adaptation, and it involves selecting among different MIMO transmission schemes or modes so as to adapt to the varying radio channel conditions for the purpose of achieving QoS delivery. However, finding the most appropriate switching method in MIMO links is still a challenge as existing methods are either computationally complex or not always accurate. This paper presents an intelligent switching method for the MIMO system consisting of two schemes - transmit diversity (TD) and spatial multiplexing (SM) - using fuzzy logic technique. In this method, two channel quality indicators (CQI) namely average received signal-to-noise ratio (RSNR) and received signal strength indicator (RSSI) are measured and are passed as inputs to the fuzzy logic system which then gives a decision – an inference. The switching decision of the fuzzy logic system is fed back to the transmitter to switch between the TD and SM schemes. Simulation results show that the proposed fuzzy logic – based switching technique outperforms conventional static switching technique in terms of bit error rate and spectral efficiency.

Dimension Free Rigid Point Set Registration in Linear Time

This paper proposes a rigid point set matching algorithm in arbitrary dimensions based on the idea of symmetric covariant function. A group of functions of the points in the set are formulated using rigid invariants. Each of these functions computes a pair of correspondence from the given point set. Then the computed correspondences are used to recover the unknown rigid transform parameters. Each computed point can be geometrically interpreted as the weighted mean center of the point set. The algorithm is compact, fast, and dimension free without any optimization process. It either computes the desired transform for noiseless data in linear time, or fails quickly in exceptional cases. Experimental results for synthetic data and 2D/3D real data are provided, which demonstrate potential applications of the algorithm to a wide range of problems.

Overcrowding and Adequate Housing: The Potential of Adaptability

Adequate housing has been a widely discussed theme in academic circles related to low-cost housing, whereas its physical features are easy to deal with, overcrowding (related to social, cultural and economic aspects) is still ambiguous, particularly regarding the set of indicators that can accurately reflect and measure it. This paper develops research on low-cost housing models for developing countries and what is the best method to embed overcrowding as an important parameter for adaptability. A critical review of international overcrowding indicators and their application in two developing countries, Cape Verde and Angola, is presented. The several rationales and the constraints for an accurate assessment of overcrowding are considered, namely baseline data (statistics), which can induce misjudgments, as well as social and cultural factors (such as personal choices of residents). This paper proposes a way to tackle overcrowding through housing adaptability, considering factors such as physical flexibility, functional ambiguity, and incremental expansion schemes. Moreover, a case-study is presented to establish a framework for the theoretical application of the proposed approach.