Gender Differences in Morbid Obese Children: Clinical Significance of Two Diagnostic Obesity Notation Model Assessment Indices

Childhood obesity is an ever increasing global health problem, affecting both developed and developing countries. Accurate evaluation of obesity in children requires difficult and detailed investigation. In our study, obesity in children was evaluated using new body fat ratios and indices. Assessment of anthropometric measurements, as well as some ratios, is important because of the evaluation of gender differences particularly during the late periods of obesity. A total of 239 children; 168 morbid obese (MO) (81 girls and 87 boys) and 71 normal weight (NW) (40 girls and 31 boys) children, participated in the study. Informed consent forms signed by the parents were obtained. Ethics Committee approved the study protocol. Mean ages (years)±SD calculated for MO group were 10.8±2.9 years in girls and 10.1±2.4 years in boys. The corresponding values for NW group were 9.0±2.0 years in girls and 9.2±2.1 years in boys. Mean body mass index (BMI)±SD values for MO group were 29.1±5.4 kg/m2 and 27.2±3.9 kg/m2 in girls and boys, respectively. These values for NW group were calculated as 15.5±1.0 kg/m2 in girls and 15.9±1.1 kg/m2 in boys. Groups were constituted based upon BMI percentiles for age-and-sex values recommended by WHO. Children with percentiles >99 were grouped as MO and children with percentiles between 85 and 15 were considered NW. The anthropometric measurements were recorded and evaluated along with the new ratios such as trunk-to-appendicular fat ratio, as well as indices such as Index-I and Index-II. The body fat percent values were obtained by bio-electrical impedance analysis. Data were entered into a database for analysis using SPSS/PASW 18 Statistics for Windows statistical software. Increased waist-to-hip circumference (C) ratios, decreased head-to-neck C, height ‘to’ ‘two’-‘to’-waist C and height ‘to’ ‘two’-‘to’-hip C ratios were observed in parallel with the development of obesity (p≤0.001). Reference value for height ‘to’ ‘two’-‘to’-hip ratio was detected as approximately 1.0. Index-II, based upon total body fat mass, showed much more significant differences between the groups than Index-I based upon weight. There was not any difference between trunk-to-appendicular fat ratios of NW girls and NW boys (p≥0.05). However, significantly increased values for MO girls in comparison with MO boys were observed (p≤0.05). This parameter showed no difference between NW and MO states in boys (p≥0.05). However, statistically significant increase was noted in MO girls compared to their NW states (p≤0.001). Trunk-to-appendicular fat ratio was the only fat-based parameter, which showed gender difference between NW and MO groups. This study has revealed that body ratios and formula based upon body fat tissue are more valuable parameters than those based on weight and height values for the evaluation of morbid obesity in children.

Fractional Order Controller Design for Vibration Attenuation in an Airplane Wing

The wing is one of the most important parts of an airplane because it ensures stability, sustenance and maneuverability of the airplane. Because of its shape, the airplane wing can be simplified to a smart beam. Active vibration suppression is realized using piezoelectric actuators that are mounted on the surface of the beam. This work presents a tuning procedure of fractional order controllers based on a graphical approach of the frequency domain representation. The efficacy of the method is proven by practically testing the controller on a laboratory scale experimental stand.

Motor Coordination and Body Mass Index in Primary School Children

Obese children will probably become obese adults, consequently exposed to an increased risk of comorbidity and premature mortality. Body weight may be indirectly determined by continuous development of coordination and motor skills. The level of motor skills and abilities is an important factor that promotes physical activity since early childhood. The aim of the study is to thoroughly understand the internal relations between motor coordination abilities and the somatic development of prepubertal children and to determine the effect of excess body weight on motor coordination by comparing the motor ability levels of children with different body mass index (BMI) values. The data were collected from 436 children aged 7–10 years, without health limitations, fully participating in school physical education classes. Body height was measured with portable stadiometers (Harpenden, Holtain Ltd.), and body mass—with a digital scale (HN-286, Omron). Motor coordination was evaluated with the Kiphard-Schilling body coordination test, Körperkoordinationstest für Kinder. The normality test by Shapiro-Wilk was used to verify the data distribution. The correlation analysis revealed a statistically significant negative association between the dynamic balance and BMI, as well as between the motor quotient and BMI (p

Upsetting of Tri-Metallic St-Cu-Al and St-Cu60Zn-Al Cylindrical Billets

This work investigates upsetting of the tri-metallic cylindrical billets both experimentally and analytically with a reduction ratio 30%. Steel, brass, and copper are used for the outer and outmost rings and aluminum for the inner core. Two different models have been designed to show material flow and the cavity took place over the two interfaces during forming after this reduction ratio. Each model has an outmost ring material as steel. Model 1 has an outer ring between the outmost ring and the solid core material as copper and Model 2 has a material as brass. Solid core is aluminum for each model. Billets were upset in press machine by using parallel flat dies. Upsetting load was recorded and compared for models and single billets. To extend the tests and compare with experimental procedure to a wider range of inner core and outer ring geometries, finite element model was performed. ABAQUS software was used for the simulations. The aim is to show how contact between outmost ring, outer ring and the inner core are carried on throughout the upsetting process. Results have shown that, with changing in height, between outmost ring, outer ring and inner core, the Model 1 and Model 2 had very good interaction, and the contact surfaces of models had various interface behaviour. It is also observed that tri-metallic materials have lower weight but better mechanical properties than single materials. This can give an idea for using and producing these new materials for different purposes.

Numerical Analysis of Rapid Drawdown in Dams Based on Brazilian Standards

Rapid drawdown is one of the cases referred to ground stability study in dam projects. Due to the complexity generated by the combination of loads and the difficulty in determining the parameters, analyses of rapid drawdown are usually performed considering the immediate reduction of water level upstream. The proposal of a simulation, considering the gradual reduction in water level upstream, requires knowledge of parameters about consolidation and those related to unsaturated soil. In this context, the purpose of this study is to understand the methodology of collection and analysis of parameters to simulate a rapid drawdown in dams. Using a numerical tool, the study is complemented with a hypothetical case study that can assist the practical use of data compiled. The referenced dam presents homogeneous section composed of clay soil, a height of 70 meters, a width of 12 meters, and upstream slope with inclination 1V:3H.

Theoretical Model of a Flat Plate Solar Collector Integrated with Phase Change Material

The objective of this work was to develop a theoretical model to study the dynamic thermal behavior of a flat plate solar collector integrated with a phase change material (PCM). The PCM acted as a heat source for the solar system during low intensity solar radiation and night. The energy balance equations for the various components of the collector as well as for the PCM were formulated and numerically solved using MATLAB computational program. The effect of natural convection on heat during the melting process was taken into account by using an effective thermal conductivity. The model was used to investigate the effect of inlet water temperature, water mass flow rate, and PCM thickness on the outlet water temperature and the melt fraction during charging and discharging modes. A comparison with a collector without PCM was made. Results showed that charging and discharging processes of PCM have six stages. The adding of PCM caused a decrease in temperature during charge and an increase during discharge. The rise was most enhanced for higher inlet water temperature, PCM thickness and for lower mass flow rate. Analysis indicated that the complete melting time was shorter than the solidification time due to the high heat transfer coefficient during melting. The increases in PCM height and mass flow rate were not linear with the melting and solidification times.

Dispersion Rate of Spilled Oil in Water Column under Non-Breaking Water Waves

The purpose of this study is to present a mathematical phrase for calculating the dispersion rate of spilled oil in water column under non-breaking waves. In this regard, a multiphase numerical model is applied for which waves and oil phase were computed concurrently, and accuracy of its hydraulic calculations have been proven. More than 200 various scenarios of oil spilling in wave waters were simulated using the multiphase numerical model and its outcome were collected in a database. The recorded results were investigated to identify the major parameters affected vertical oil dispersion and finally 6 parameters were identified as main independent factors. Furthermore, some statistical tests were conducted to identify any relationship between the dependent variable (dispersed oil mass in the water column) and independent variables (water wave specifications containing height, length and wave period and spilled oil characteristics including density, viscosity and spilled oil mass). Finally, a mathematical-statistical relationship is proposed to predict dispersed oil in marine waters. To verify the proposed relationship, a laboratory example available in the literature was selected. Oil mass rate penetrated in water body computed by statistical regression was in accordance with experimental data was predicted. On this occasion, it was necessary to verify the proposed mathematical phrase. In a selected laboratory case available in the literature, mass oil rate penetrated in water body computed by suggested regression. Results showed good agreement with experimental data. The validated mathematical-statistical phrase is a useful tool for oil dispersion prediction in oil spill events in marine areas.

Seismic Behavior of Steel Moment-Resisting Frames for Uplift Permitted in Near-Fault Regions

Seismic performance of steel moment-resisting frame structures is investigated considering nonlinear soil-structure interaction (SSI) effects. 10-, 15-, and 20-story planar building frames with aspect ratio of 3 are designed in accordance with current building codes. Inelastic seismic demands of the superstructure are considered using concentrated plasticity model. The raft foundation system is designed for different soil types. Beam-on-nonlinear Winkler foundation (BNWF) is used to represent dynamic impedance of the underlying soil. Two sets of pulse-like as well as no-pulse near-fault earthquakes are used as input ground motions. The results show that the reduction in drift demands due to nonlinear SSI is characterized by a more uniform distribution pattern along the height when compared to the fixed-base and linear SSI condition. It is also concluded that beneficial effects of nonlinear SSI on displacement demands is more significant in case of pulse-like ground motions and performance level of the steel moment-resisting frames can be enhanced.

Innovation and Analysis of Vibrating Fork Level Switch

A vibrating-fork sensor can measure the level height of solids and liquids and operates according to the principle that vibrations created by piezoelectric ceramics are transmitted to the vibrating fork, which produces resonance. When the vibrating fork touches an object, its resonance frequency changes and produces a signal that returns to a controller for immediate adjustment, so as to effectively monitor raw material loading. The design of the vibrating fork in a vibrating-fork material sensor is crucial. In this paper, ANSYS finite element analysis software is used to perform modal analysis on the vibrations of the vibrating fork. In addition, to design and produce a superior vibrating fork, the dimensions and welding shape of the vibrating fork are compared in a simulation performed using the Taguchi method.

Model the Off-Shore Ocean-Sea Waves to Generate Electric Power by Design of a Converting Device

In this paper, we will present a mathematical model to design a system able to generate electricity from ocean-sea waves. We will use the basic principles of the transfer of the energy potential of waves in a chamber to force the air inside a vertical or inclined cylindrical column, which is topped by a wind turbine to rotate the electric generator. The present mathematical model included a high number of variables such as the wave, height, width, length, velocity, and frequency, as well as others for the energy cylindrical column, like varying diameters and heights, and the wave chamber shape diameter and height. While for the wells wind turbine the variables included the number of blades, length, width, and clearance, as well as the rotor and tip radius. Additionally, the turbine rotor and blades must be made from the light and strong material for a smooth blade surface. The variables were too vast and high in number. Then the program was run successfully within the MATLAB and presented very good modeling results.

Effect of Loop Diameter, Height and Insulation on a High Temperature CO2 Based Natural Circulation Loop

Natural circulation loops (NCLs) are buoyancy driven flow systems without any moving components. NCLs have vast applications in geothermal, solar and nuclear power industry where reliability and safety are of foremost concern. Due to certain favorable thermophysical properties, especially near supercritical regions, carbon dioxide can be considered as an ideal loop fluid in many applications. In the present work, a high temperature NCL that uses supercritical carbon dioxide as loop fluid is analysed. The effects of relevant design and operating variables on loop performance are studied. The system operating under steady state is modelled taking into account the axial conduction through loop fluid and loop wall, and heat transfer with surroundings. The heat source is considered to be a heater with controlled heat flux and heat sink is modelled as an end heat exchanger with water as the external cold fluid. The governing equations for mass, momentum and energy conservation are normalized and are solved numerically using finite volume method. Results are obtained for a loop pressure of 90 bar with the power input varying from 0.5 kW to 6.0 kW. The numerical results are validated against the experimental results reported in the literature in terms of the modified Grashof number (Grm) and Reynolds number (Re). Based on the results, buoyancy and friction dominated regions are identified for a given loop. Parametric analysis has been done to show the effect of loop diameter, loop height, ambient temperature and insulation. The results show that for the high temperature loop, heat loss to surroundings affects the loop performance significantly. Hence this conjugate heat transfer between the loop and surroundings has to be considered in the analysis of high temperature NCLs.

An Integrated Experimental and Numerical Approach to Develop an Electronic Instrument to Study Apple Bruise Damage

Apple bruise damage from harvesting, handling, transporting and sorting is considered to be the major source of reduced fruit quality, resulting in loss of profits for the entire fruit industry. The three factors which can physically cause fruit bruising are vibration, compression load and impact, the latter being the most common source of bruise damage. Therefore, prediction of the level of damage, stress distribution and deformation of the fruits under external force has become a very important challenge. In this study, experimental and numerical methods were used to better understand the impact caused when an apple is dropped from different heights onto a plastic surface and a conveyor belt. Results showed that the extent of fruit damage is significantly higher for plastic surface, being dependent on the height. In order to support the development of a biomimetic electronic device for the determination of fruit damage, the mechanical properties of the apple fruit were determined using mechanical tests. Preliminary results showed different values for the Young’s modulus according to the zone of the apple tested. Along with the mechanical characterization of the apple fruit, the development of the first two prototypes is discussed and the integration of the results obtained to construct the final element model of the apple is presented. This work will help to reduce significantly the bruise damage of fruits or vegetables during the entire processing which will allow the introduction of exportation destines and consequently an increase in the economic profits in this sector.

Laboratory Indices in Late Childhood Obesity: The Importance of DONMA Indices

Obesity in childhood establishes a ground for adulthood obesity. Especially morbid obesity is an important problem for the children because of the associated diseases such as diabetes mellitus, cancer and cardiovascular diseases. In this study, body mass index (BMI), body fat ratios, anthropometric measurements and ratios were evaluated together with different laboratory indices upon evaluation of obesity in morbidly obese (MO) children. Children with nutritional problems participated in the study. Written informed consent was obtained from the parents. Study protocol was approved by the Ethics Committee. Sixty-two MO girls aged 129.5±35.8 months and 75 MO boys aged 120.1±26.6 months were included into the scope of the study. WHO-BMI percentiles for age-and-sex were used to assess the children with those higher than 99th as morbid obesity. Anthropometric measurements of the children were recorded after their physical examination. Bio-electrical impedance analysis was performed to measure fat distribution. Anthropometric ratios, body fat ratios, Index-I and Index-II as well as insulin sensitivity indices (ISIs) were calculated. Girls as well as boys were binary grouped according to homeostasis model assessment-insulin resistance (HOMA-IR) index of 2.5, fasting glucose to insulin ratio (FGIR) of 6 and quantitative insulin sensitivity check index (QUICKI) of 0.33 as the frequently used cut-off points. They were evaluated based upon their BMIs, arms, legs, trunk, whole body fat percentages, body fat ratios such as fat mass index (FMI), trunk-to-appendicular fat ratio (TAFR), whole body fat ratio (WBFR), anthropometric measures and ratios [waist-to-hip, head-to-neck, thigh-to-arm, thigh-to-ankle, height/2-to-waist, height/2-to-hip circumference (C)]. SPSS/PASW 18 program was used for statistical analyses. p≤0.05 was accepted as statistically significance level. All of the fat percentages showed differences between below and above the specified cut-off points in girls when evaluated with HOMA-IR and QUICKI. Differences were observed only in arms fat percent for HOMA-IR and legs fat percent for QUICKI in boys (p≤ 0.05). FGIR was unable to detect any differences for the fat percentages of boys. Head-to-neck C was the only anthropometric ratio recommended to be used for all ISIs (p≤0.001 for both girls and boys in HOMA-IR, p≤0.001 for girls and p≤0.05 for boys in FGIR and QUICKI). Indices which are recommended for use in both genders were Index-I, Index-II, HOMA/BMI and log HOMA (p≤0.001). FMI was also a valuable index when evaluated with HOMA-IR and QUICKI (p≤0.001). The important point was the detection of the severe significance for HOMA/BMI and log HOMA while they were evaluated also with the other indices, FGIR and QUICKI (p≤0.001). These parameters along with Index-I were unique at this level of significance for all children. In conclusion, well-accepted ratios or indices may not be valid for the evaluation of both genders. This study has emphasized the limiting properties for boys. This is particularly important for the selection process of some ratios and/or indices during the clinical studies. Gender difference should be taken into consideration for the evaluation of the ratios or indices, which will be recommended to be used particularly within the scope of obesity studies.

Method and Experiment of Fabricating and Cutting the Burr for Y Shape Nanochannel

The present paper proposes using atomic force microscopy (AFM) and the concept of specific down force energy (SDFE) to establish a method for fabricating and cutting the burr for Y shape nanochannel on silicon (Si) substrate. For fabricating Y shape nanochannel, it first makes the experimental cutting path planning for fabricating Y shape nanochannel until the fifth cutting layer. Using the constant down force by AFM and SDFE theory and following the experimental cutting path planning, the cutting depth and width of each pass of Y shape nanochannel can be predicted by simulation. The paper plans the path for cutting the burr at the edge of Y shape nanochannel. Then, it carries out cutting the burr along the Y nanochannel edge by using a smaller down force. The height of standing burr at the edge is required to be below the set value of 0.54 nm. The results of simulation and experiment of fabricating and cutting the burr for Y shape nanochannel is further compared.

The Effect of Brand Mascots on Consumers' Purchasing Behaviors

Brand mascots are the cartoon characters, which are mainly designed for advertising or other related marketing purposes. Many brand mascots are extremely popular, since they were presented in commercial advertisements and Line Stickers. Brand Line Stickers could lead the users to identify with the brand and brand mascots, where might influence users to become loyal customers, and share the identity with the brand. The objective of the current study is to examine the effect of brand mascots on consumers’ decision and consumers’ intention to purchase the product. This study involved 400 participants, using cluster sampling from 50 districts in Bangkok metropolitan area. The descriptive analysis shows that using brand mascot causes consumers' positive attitude toward the products, and also heightens the possibility to purchasing the products. The current study suggests the new type of marketing strategy, which is brand fandom. This study has also contributed the knowledge to the area of integrated marketing communication and identification theory.

Numerical Simulations of Electronic Cooling with In-Line and Staggered Pin Fin Heat Sinks

Three-dimensional incompressible turbulent fluid flow and heat transfer of pin fin heat sinks using air as a cooling fluid are numerically studied in this study. Two different kinds of pin fins are compared in the thermal performance, including circular and square cross sections, both are in-line and staggered arrangements. The turbulent governing equations are solved using a control-volume- based finite-difference method. Subsequently, numerical computations are performed with the realizable k - ԑ turbulence for the parameters studied, the fin height H, fin diameter D, and Reynolds number (Re) in the range of 7 ≤ H ≤ 10, 0.75 ≤ D ≤ 2, 2000 ≤ Re ≤ 126000 respectively. The numerical results are validated with available experimental data in the literature and good agreement has been found. It indicates that circular pin fins are streamlined in comparing with the square pin fins, the pressure drop is small than that of square pin fins, and heat transfer is not as good as the square pin fins. The thermal performance of the staggered pin fins is better than that of in-line pin fins because the staggered arrangements produce large disturbance. Both in-line and staggered arrangements show the same behavior for thermal resistance, pressure drop, and the entropy generation.

Structural Behavior of Precast Foamed Concrete Sandwich Panel Subjected to Vertical In-Plane Shear Loading

Experimental and analytical studies were accomplished to examine the structural behavior of precast foamed concrete sandwich panel (PFCSP) under vertical in-plane shear load. PFCSP full-scale specimens with total number of six were developed with varying heights to study an important parameter slenderness ratio (H/t). The production technique of PFCSP and the procedure of test setup were described. The results obtained from the experimental tests were analysed in the context of in-plane shear strength capacity, load-deflection profile, load-strain relationship, slenderness ratio, shear cracking patterns and mode of failure. Analytical study of finite element analysis was implemented and the theoretical calculations of the ultimate in-plane shear strengths using the adopted ACI318 equation for reinforced concrete wall were determined aimed at predicting the in-plane shear strength of PFCSP. The decrease in slenderness ratio from 24 to 14 showed an increase of 26.51% and 21.91% on the ultimate in-plane shear strength capacity as obtained experimentally and in FEA models, respectively. The experimental test results, FEA models data and theoretical calculation values were compared and provided a significant agreement with high degree of accuracy. Therefore, on the basis of the results obtained, PFCSP wall has the potential use as an alternative to the conventional load-bearing wall system.

Complex Flow Simulation Using a Partially Lagging One-Equation Turbulence Model

A recently developed one-equation turbulence model has been successfully applied to simulate turbulent flows with various complexities. The model, which is based on the transformation of the k-ε closure, is wall-distance free and equipped with lagging destruction/dissipation terms. Test cases included shockboundary- layer interaction flows over the NACA 0012 airfoil, an axisymmetric bump, and the ONERA M6 wing. The capability of the model to operate in a Scale Resolved Simulation (SRS) mode is demonstrated through the simulation of a massive flow separation over a circular cylinder at Re= 1.2 x106. An assessment of the results against available experiments Menter (k-ε)1Eq and the Spalart- Allmaras model that belongs to the single equation closure family is made.

Effect of Equivalence Ratio on Performance of Fluidized Bed Gasifier Run with Sized Biomass

Recently, fluidized bed gasification becomes an attractive technology for power generation due to its higher efficiency. The main objective pursued in this work is to investigate the producer gas production potential from sized biomass (sawdust and pigeon pea) by applying the air gasification technique. The size of the biomass selected for the study was in the range of 0.40-0.84 mm. An experimental study was conducted using a fluidized bed gasifier with 210 mm diameter and 1600 mm height. During the experiments, the fuel properties and the effects of operating parameters such as gasification temperatures 700 to 900 °C, equivalence ratio 0.16 to 0.46 were studied. It was concluded that substantial amounts of producer gas (up to 1110 kcal/m3) could be produced utilizing biomass such as sawdust and pigeon pea by applying this fluidization technique. For both samples, the rise of temperature till 900 °C and equivalence ratio of 0.4 favored further gasification reactions and resulted into producer gas with calorific value 1110 kcal/m3.

The Influence of Step and Fillet Shape on Nozzle Endwall Heat Transfer

There is a gap at combustor-turbine interface where leakage flow comes out to prevent hot gas ingestion into the gas turbine nozzle platform. The leakage flow protects the nozzle endwall surface from the hot gas coming from combustor exit. For controlling flow’s stream, the gap’s geometry is transformed by changing fillet radius size. During the operation, step configuration is occurred that was unintended between combustor-turbine platform interface caused by thermal expansion or mismatched assembly. In this study, CFD simulations were performed to investigate the effect of the fillet and step on heat transfer and film cooling effectiveness on the nozzle platform. The Reynolds-averaged Navier-stokes equation was solved with turbulence model, SST k-omega. With the fillet configuration, predicted film cooling effectiveness results indicated that fillet radius size influences to enhance film cooling effectiveness. Predicted film cooling effectiveness results at forward facing step configuration indicated that step height influences to enhance film cooling effectiveness. We suggested that designer change a combustor-turbine interface configuration which was varied by fillet radius size near endwall gap when there was a step at combustor-turbine interface. Gap shape was modified by increasing fillet radius size near nozzle endwall. Also, fillet radius and step height were interacted with the film cooling effectiveness and heat transfer on endwall surface.