Effects of a Methanol Fraction of the Leaves of Leonotis leonurus on the Blood Pressure and Heart Rate of Normotensive Male Wistar Rats

Leonotisleonurus a shrub indigenous to Southern Africa is widely used in traditional medicine to treat a variety of conditions ranging from skin diseases and cough to epileptic fits and ‘heart problems’. Studies on the aqueous extract of the leaves have indicated cycloxegenase enzyme inhibitory activity and an antihypertensive effect. Five methanol leaf extract fractions (MLEa - MLEe) of L. leonurus were tested on anaesthetized normotensive male Wistar rats (AWR) and isolated perfused working rat hearts (IWH). Fraction MLEc (0.01mg/kg – 0.05mg/kg) induced significant increases in BP and HR in AWR and positive chronotropic and inotropic effects in IWH (1.0mg/ml – 5.0mg/ml). Pre-administration of atenolol (2.0mg/kg) and prazosin (60μg/kg) significantly inhibited MLEc effect on HR and MAP respectively in vivo, while atenolol (7.0mg/ml) pre-perfusion significantly inhibited MLEc effect in vitro. The hypertensive effect of MLEc is probably via β1agonism. Results also indicate the presence of multiple cardioactive compounds in L. leonurus.

Subthreshold Circuit Performance Investigation under Temperature Variations

Ultra-low-power (ULP) circuits have received widespread attention due to the rapid growth of biomedical applications and Battery-less Electronics. Subthreshold region of transistor operation is used in ULP circuits. Major research challenge in the subthreshold operating region is to extract the ULP benefits with minimal degradation in speed and robustness. Process, Voltage and Temperature (PVT) variations significantly affect the performance of subthreshold circuits. Designed performance parameters of ULP circuits may vary largely due to temperature variations. Hence, this paper investigates the effect of temperature variation on device and circuit performance parameters at different biasing voltages in the subthreshold region. Simulation results clearly demonstrate that in deep subthreshold and near threshold voltage regions, performance parameters are significantly affected whereas in moderate subthreshold region, subthreshold circuits are more immune to temperature variations. This establishes that moderate subthreshold region is ideal for temperature immune circuits.

PET/CT Patient Dosage Assay

A Positron Emission Tomography (PET) is a radioisotope imaging technique that illustrates the organs and the metabolisms of the human body. This technique is based on the simultaneous detection of 511 keV annihilation photons, annihilated as a result of electrons annihilating positrons that radiate from positron-emitting radioisotopes that enter biological active molecules in the body. This study was conducted on ten patients in an effort to conduct patient-related experimental studies. Dosage monitoring for the bladder, which was the organ that received the highest dose during PET applications, was conducted for 24 hours. Assessment based on measuring urination activities after injecting patients was also a part of this study. The MIRD method was used to conduct dosage calculations for results obtained from experimental studies. Results obtained experimentally and theoretically were assessed comparatively.

Development of Better Quality Low-Cost Activated Carbon from South African Pine Tree (Pinus patula) Sawdust: Characterization and Comparative Phenol Adsorption

The remediation of water resources pollution in developing countries requires the application of alternative sustainable cheaper and efficient end-of-pipe wastewater treatment technologies. The feasibility of use of South African cheap and abundant pine tree (Pinus patula) sawdust for development of lowcost AC of comparable quality to expensive commercial ACs in the abatement of water pollution was investigated. AC was developed at optimized two-stage N2-superheated steam activation conditions in a fixed bed reactor, and characterized for proximate and ultimate properties, N2-BET surface area, pore size distribution, SEM, pHPZC and FTIR. The sawdust pyrolysis activation energy was evaluated by TGA. Results indicated that the chars prepared at 800oC and 2hrs were suitable for development of better quality AC at 800oC and 47% burn-off having BET surface area (1086m2/g), micropore volume (0.26cm3/g), and mesopore volume (0.43cm3/g) comparable to expensive commercial ACs, and suitable for water contaminants removal. The developed AC showed basic surface functionality at pHPZC at 10.3, and a phenol adsorption capacity that was higher than that of commercial Norit (RO 0.8) AC. Thus, it is feasible to develop better quality low-cost AC from (Pinus patula) sawdust using twostage N2-steam activation in fixed-bed reactor.

Parental Attitudes as a Predictor of Cyber Bullying among Primary School Children

Problem Statement:Rapid technological developments of the 21st century have advanced our daily lives in various ways. Particularly in education, students frequently utilize technological resources to aid their homework and to access information. listen to radio or watch television (26.9 %) and e-mails (34.2 %) [26]. Not surprisingly, the increase in the use of technologies also resulted in an increase in the use of e-mail, instant messaging, chat rooms, mobile phones, mobile phone cameras and web sites by adolescents to bully peers. As cyber bullying occurs in the cyber space, lesser access to technologies would mean lesser cyber-harm. Therefore, the frequency of technology use is a significant predictor of cyber bullying and cyber victims. Cyber bullies try to harm the victim using various media. These tools include sending derogatory texts via mobile phones, sending threatening e-mails and forwarding confidential emails to everyone on the contacts list. Another way of cyber bullying is to set up a humiliating website and invite others to post comments. In other words, cyber bullies use e-mail, chat rooms, instant messaging, pagers, mobile texts and online voting tools to humiliate and frighten others and to create a sense of helplessness. No matter what type of bullying it is, it negatively affects its victims. Children who bully exhibit more emotional inhibition and attribute themselves more negative self-statements compared to non-bullies. Students whose families are not sympathetic and who receive lower emotional support are more prone to bully their peers. Bullies have authoritarian families and do not get along well with them. The family is the place where the children-s physical, social and psychological needs are satisfied and where their personalities develop. As the use of the internet became prevalent so did parents- restrictions on their children-s internet use. However, parents are unaware of the real harm. Studies that explain the relationship between parental attitudes and cyber bullying are scarce in literature. Thus, this study aims to investigate the relationship between cyber bullying and parental attitudes in the primary school. Purpose of Study: This study aimed to investigate the relationship between cyber bullying and parental attitudes. A second aim was to determine whether parental attitudes could predict cyber bullying and if so which variables could predict it significantly. Methods:The study had a cross-sectional and relational survey model. A demographics information form, questions about cyber bullying and a Parental Attitudes Inventory were conducted with a total of 346 students (189 females and 157 males) registered at various primary schools. Data was analysed by multiple regression analysis using the software package SPSS 16.

Digital filters for Hot-Mix Asphalt Complex Modulus Test Data Using Genetic Algorithm Strategies

The dynamic or complex modulus test is considered to be a mechanistically based laboratory test to reliably characterize the strength and load-resistance of Hot-Mix Asphalt (HMA) mixes used in the construction of roads. The most common observation is that the data collected from these tests are often noisy and somewhat non-sinusoidal. This hampers accurate analysis of the data to obtain engineering insight. The goal of the work presented in this paper is to develop and compare automated evolutionary computational techniques to filter test noise in the collection of data for the HMA complex modulus test. The results showed that the Covariance Matrix Adaptation-Evolutionary Strategy (CMA-ES) approach is computationally efficient for filtering data obtained from the HMA complex modulus test.

Policies that Enhance Learning and Teaching

Educational institutions often implement policies with the intention of influencing how learning and teaching occur. Generally, such policies are not as effective as their makers would like; changing the behavior of third-level teachers proves difficult. Nevertheless, a policy instituted in 2006 at the Dublin Institute of Technology has met with success: each newly hired faculty member must have a post-graduate qualification in “Learning and Teaching" or successfully complete one within the first two years of employment. The intention is to build teachers- knowledge about student-centered pedagogies and their capacity to implement them. As a result of this policy (and associated programs that support it), positive outcomes are readily apparent. Individual teachers who have completed the programs have implemented significant change at the course and program levels. This paper introduces the policy, identifies outcomes in relation to existing theory, describes research underway, and pinpoints areas where organizational learning has occurred.

Modeling and Analysis of SVPWM Based Dynamic Voltage Restorer

In this paper the modeling and analysis of Space Vector Pulse Width Modulation (SVPWM) based Dynamic Voltage Restorer (DVR) using PSCAD/EMTDC software will be presented in details. The simulation includes full modeling of the SVPWM technique used to control the DVR inverter. A test power system composed of three phase voltage source, sag generator, DVR and three phase resistive load is used to demonstrate restoration capability of the DVR. The simulation results of the presented DVR proved excellent voltage sag mitigation to protect sensitive loads.

Struggles for Integration of the Technologies into Learning Environment in Turkey

Primary studies are being carried out in Turkey for expanding information and communication technologies (ICT) aided instruction activities. Subject of the present study is to identify whether those studies achieved their goals in the application. Information technologies (IT) formative teachers in the primary schools, and academicians in the faculties of education were interviewed to investigate the process and results of implementing computer-aided instruction methods whose basis is strengthened in theory. Analysis of the results gained from two separate surveys demonstrated that capability of the teachers in elementary education institutions for carrying into effect computer-aided instruction and technical infrastructure has not been established for computer-aided instruction practices yet. Prospective teachers must be well-equipped in ICT to duly fulfill requirements of modern education and also must be self-confident. Finally, scope and intensity of the courses given in connection with teaching of the ICT in faculties of education needs to be revised.

An Exact Solution of Axi-symmetric Conductive Heat Transfer in Cylindrical Composite Laminate under the General Boundary Condition

This study presents an exact general solution for steady-state conductive heat transfer in cylindrical composite laminates. Appropriate Fourier transformation has been obtained using Sturm-Liouville theorem. Series coefficients are achieved by solving a set of equations that related to thermal boundary conditions at inner and outer of the cylinder, also related to temperature continuity and heat flux continuity between each layer. The solution of this set of equations are obtained using Thomas algorithm. In this paper, the effect of fibers- angle on temperature distribution of composite laminate is investigated under general boundary conditions. Here, we show that the temperature distribution for any composite laminates is between temperature distribution for laminates with θ = 0° and θ = 90° .

Mining Sequential Patterns Using Hybrid Evolutionary Algorithm

Mining Sequential Patterns in large databases has become an important data mining task with broad applications. It is an important task in data mining field, which describes potential sequenced relationships among items in a database. There are many different algorithms introduced for this task. Conventional algorithms can find the exact optimal Sequential Pattern rule but it takes a long time, particularly when they are applied on large databases. Nowadays, some evolutionary algorithms, such as Particle Swarm Optimization and Genetic Algorithm, were proposed and have been applied to solve this problem. This paper will introduce a new kind of hybrid evolutionary algorithm that combines Genetic Algorithm (GA) with Particle Swarm Optimization (PSO) to mine Sequential Pattern, in order to improve the speed of evolutionary algorithms convergence. This algorithm is referred to as SP-GAPSO.

Prevention of Biofilm Formation in Urinary Catheter by Coating Enzymes/ Gentamycin/ EDTA

Urinary Tract Infections (UTI) account for an estimated 25-40% nosocomial infection, out of which 90% are associated with urinary catheter, called Catheter associated urinary tract infection (CAUTI). The microbial populations within CAUTI frequently develop as biofilms. In the present study, microbial contamination of indwelling urinary catheters was investigated. Biofilm forming ability of the isolates was determined by tissue culture plate method. Prevention of biofilm formation in the urinary catheter by Pseudomonas aeruginosa was also determined by coating the catheter with some enzymes, gentamycin and EDTA. It was found that 64% of the urinary catheters get contaminated during the course of catheterization. Of the total 6 isolates, biofilm formation was seen in 100% Pseudomonas aeruginosa and E. coli, 90% in Enterococci, 80% in Klebsiella and 66% in S. aureus. It was noted that the biofilm production by Pseudomonas was prolonged by 7 days in amylase, 8 days in protease, 6 days in lysozyme, 7days in gentamycin and 5 days in EDTA treated catheter.

Edge-end Pixel Extraction for Edge-based Image Segmentation

Extraction of edge-end-pixels is an important step for the edge linking process to achieve edge-based image segmentation. This paper presents an algorithm to extract edge-end pixels together with their directional sensitivities as an augmentation to the currently available mathematical models. The algorithm is implemented in the Java environment because of its inherent compatibility with web interfaces since its main use is envisaged to be for remote image analysis on a virtual instrumentation platform.

Utilizing Virtual Worlds in Education: The Implications for Practice

Multi User Virtual Worlds are becoming a valuable educational tool. Learning experiences within these worlds focus on discovery and active experiences that both engage students and motivate them to explore new concepts. As educators, we need to explore these environments to determine how they can most effectively be used in our instructional practices. This paper explores the current application of virtual worlds to identify meaningful educational strategies that are being used to engage students and enhance teaching and learning.

Video Quality assessment Measure with a Neural Network

In this paper, we present the video quality measure estimation via a neural network. This latter predicts MOS (mean opinion score) by providing height parameters extracted from original and coded videos. The eight parameters that are used are: the average of DFT differences, the standard deviation of DFT differences, the average of DCT differences, the standard deviation of DCT differences, the variance of energy of color, the luminance Y, the chrominance U and the chrominance V. We chose Euclidean Distance to make comparison between the calculated and estimated output.

The Effect of Ultrasonic Vibration of Workpiece in Electrical Discharge Machining of AISIH13 Tool Steel

In the present work, a study has been made on the combination of the electrical discharge machining (EDM) with ultrasonic vibrations to improve the machining efficiency. In experiments the graphite used as tool electrode and material of workpiece was AISIH13 tool steel. The parameters such as discharge peak current and pulse duration were changed to explore their effect on the material removal rate (MRR), relative tool wear ratio (TWR) and surface roughness. From the experimental result it can be seen that ultrasonic vibration of the workpiece can significantly reduces the inactive pulses and improves the stability of process. It was found that ultrasonic assisted EDM (US-EDM) is effective in attaining a high material removal rate (MRR) in finishing regime.

Autonomous Control of Multiple Mobile Manipulators

This paper considers the autonomous navigation problem of multiple n-link nonholonomic mobile manipulators within an obstacle-ridden environment. We present a set of nonlinear acceleration controllers, derived from the Lyapunov-based control scheme, which generates collision-free trajectories of the mobile manipulators from initial configurations to final configurations in a constrained environment cluttered with stationary solid objects of different shapes and sizes. We demonstrate the efficiency of the control scheme and the resulting acceleration controllers of the mobile manipulators with results through computer simulations of an interesting scenario.

Formation of (Ga,Mn)N Dilute Magnetic Semiconductor by Manganese Ion Implantation

Un-doped GaN film of thickness 1.90 mm, grown on sapphire substrate were uniformly implanted with 325 keV Mn+ ions for various fluences varying from 1.75 x 1015 - 2.0 x 1016 ions cm-2 at 3500 C substrate temperature. The structural, morphological and magnetic properties of Mn ion implanted gallium nitride samples were studied using XRD, AFM and SQUID techniques. XRD of the sample implanted with various ion fluences showed the presence of different magnetic phases of Ga3Mn, Ga0.6Mn0.4 and Mn4N. However, the compositions of these phases were found to be depended on the ion fluence. AFM images of non-implanted sample showed micrograph with rms surface roughness 2.17 nm. Whereas samples implanted with the various fluences showed the presence of nano clusters on the surface of GaN. The shape, size and density of the clusters were found to vary with respect to ion fluence. Magnetic moment versus applied field curves of the samples implanted with various fluences exhibit the hysteresis loops. The Curie temperature estimated from zero field cooled and field cooled curves for the samples implanted with the fluence of 1.75 x 1015, 1.5 x 1016 and 2.0 x 1016 ions cm-2 was found to be 309 K, 342 K and 350 K respectively.

A Neurofuzzy Learning and its Application to Control System

A neurofuzzy approach for a given set of input-output training data is proposed in two phases. Firstly, the data set is partitioned automatically into a set of clusters. Then a fuzzy if-then rule is extracted from each cluster to form a fuzzy rule base. Secondly, a fuzzy neural network is constructed accordingly and parameters are tuned to increase the precision of the fuzzy rule base. This network is able to learn and optimize the rule base of a Sugeno like Fuzzy inference system using Hybrid learning algorithm, which combines gradient descent, and least mean square algorithm. This proposed neurofuzzy system has the advantage of determining the number of rules automatically and also reduce the number of rules, decrease computational time, learns faster and consumes less memory. The authors also investigate that how neurofuzzy techniques can be applied in the area of control theory to design a fuzzy controller for linear and nonlinear dynamic systems modelling from a set of input/output data. The simulation analysis on a wide range of processes, to identify nonlinear components on-linely in a control system and a benchmark problem involving the prediction of a chaotic time series is carried out. Furthermore, the well-known examples of linear and nonlinear systems are also simulated under the Matlab/Simulink environment. The above combination is also illustrated in modeling the relationship between automobile trips and demographic factors.

Panoramic Sensor Based Blind Spot Accident Prevention System

There are many automotive accidents due to blind spots and driver inattentiveness. Blind spot is the area that is invisible to the driver's viewpoint without head rotation. Several methods are available for assisting the drivers. Simplest methods are — rear mirrors and wide-angle lenses. But, these methods have a disadvantage of the requirement for human assistance. So, the accuracy of these devices depends on driver. Another approach called an automated approach that makes use of sensors such as sonar or radar. These sensors are used to gather range information. The range information will be processed and used for detecting the collision. The disadvantage of this system is — low angular resolution and limited sensing volumes. This paper is a panoramic sensor based automotive vehicle monitoring..