Induction Melting as a Fabrication Route for Aluminum-Carbon Nanotubes Nanocomposite

Increasing demands of contemporary applications for high strength and lightweight materials prompted the development of metal-matrix composites (MMCs). After the discovery of carbon nanotubes (CNTs) in 1991 (revealing an excellent set of mechanical properties) became one of the most promising strengthening materials for MMC applications. Additionally, the relatively low density of the nanotubes imparted high specific strengths, making them perfect strengthening material to reinforce MMCs. In the present study, aluminum-multiwalled carbon nanotubes (Al-MWCNTs) composite was prepared in an air induction furnace. The dispersion of the nanotubes in molten aluminum was assisted by inherent string action of induction heating at 790°C. During the fabrication process, multifunctional fluxes were used to avoid oxidation of the nanotubes and molten aluminum. Subsequently, the melt was cast in to a copper mold and cold rolled to 0.5 mm thickness. During metallographic examination using a scanning electron microscope, it was observed that the nanotubes were effectively dispersed in the matrix. The mechanical properties of the composite were significantly increased as compared to pure aluminum specimen i.e. the yield strength from 65 to 115 MPa, the tensile strength from 82 to 125 MPa and hardness from 27 to 30 HV for pure aluminum and Al-CNTs composite, respectively. To recognize the associated strengthening mechanisms in the nanocomposites, three foremost strengthening models i.e. shear lag model, Orowan looping and Hall-Petch have been critically analyzed; experimental data were found to be closely satisfying the shear lag model.

Tensile and Fracture Properties of Cast and Forged Composite Synthesized by Addition of in-situ Generated Al3Ti-Al2O3 Particles to Magnesium

TiO2 particles have been added in molten aluminium to result in aluminium based cast Al/Al3Ti-Al2O3 composite, which has been added then to molten magnesium to synthesize magnesium based cast Mg-Al/Al3Ti-Al2O3 composite. The nominal compositions in terms of Mg, Al, and TiO2 contents in the magnesium based composites are Mg-9Al-0.6TiO2, Mg-9Al-0.8TiO2, Mg-9Al-1.0TiO2 and Mg-9Al-1.2TiO2 designated respectively as MA6T, MA8T, MA10T and MA12T. The microstructure of the cast magnesium based composite shows grayish rods of intermetallics Al3Ti, inherited from aluminium based composite but these rods, on hot forging, breaks into smaller lengths decreasing the average aspect ratio (length to diameter) from 7.5 to 3.0. There are also cavities in between the broken segments of rods. β-phase in cast microstructure, Mg17Al12, dissolves during heating prior to forging and re-precipitates as relatively finer particles on cooling. The amount of β-phase also decreases on forging as segregation is removed. In both the cast and forged composite, the Brinell hardness increases rapidly with increasing addition of TiO2 but the hardness is higher in forged composites by about 80 BHN. With addition of higher level of TiO2 in magnesium based cast composite, yield strength decreases progressively but there is marginal increase in yield strength over that of the cast Mg-9 wt. pct. Al, designated as MA alloy. But the ultimate tensile strength (UTS) in the cast composites decreases with the increasing particle content indicating possibly an early initiation of crack in the brittle inter-dendritic region and their easy propagation through the interfaces of the particles. In forged composites, there is a significant improvement in both yield strength and UTS with increasing TiO2 addition and also, over those observed in their cast counterpart, but at higher addition it decreases. It may also be noted that as in forged MA alloy, incomplete recovery of forging strain increases the strength of the matrix in the composites and the ductility decreases both in the forged alloy and the composites. Initiation fracture toughness, JIC, decreases drastically in cast composites compared to that in MA alloy due to the presence of intermetallic Al3Ti and Al2O3 particles in the composite. There is drastic reduction of JIC on forging both in the alloy and the composites, possibly due to incomplete recovery of forging strain in both as well as breaking of Al3Ti rods and the voids between the broken segments of Al3Ti rods in composites. The ratio of tearing modulus to elastic modulus in cast composites show higher ratio, which increases with the increasing TiO2 addition. The ratio decreases comparatively more on forging of cast MA alloy than those in forged composites.

Measuring Enterprise Growth: Pitfalls and Implications

Enterprise growth is generally considered as a key driver of competitiveness, employment, economic development and social inclusion. As such, it is perceived to be a highly desirable outcome of entrepreneurship for scholars and decision makers. The huge academic debate resulted in the multitude of theoretical frameworks focused on explaining growth stages, determinants and future prospects. It has been widely accepted that enterprise growth is most likely nonlinear, temporal and related to the variety of factors which reflect the individual, firm, organizational, industry or environmental determinants of growth. However, factors that affect growth are not easily captured, instruments to measure those factors are often arbitrary, causality between variables and growth is elusive, indicating that growth is not easily modeled. Furthermore, in line with heterogeneous nature of the growth phenomenon, there is a vast number of measurement constructs assessing growth which are used interchangeably. Differences among various growth measures, at conceptual as well as at operationalization level, can hinder theory development which emphasizes the need for more empirically robust studies. In line with these highlights, the main purpose of this paper is twofold. Firstly, to compare structure and performance of three growth prediction models based on the main growth measures: Revenues, employment and assets growth. Secondly, to explore the prospects of financial indicators, set as exact, visible, standardized and accessible variables, to serve as determinants of enterprise growth. Finally, to contribute to the understanding of the implications on research results and recommendations for growth caused by different growth measures. The models include a range of financial indicators as lag determinants of the enterprises’ performances during the 2008-2013, extracted from the national register of the financial statements of SMEs in Croatia. The design and testing stage of the modeling used the logistic regression procedures. Findings confirm that growth prediction models based on different measures of growth have different set of predictors. Moreover, the relationship between particular predictors and growth measure is inconsistent, namely the same predictor positively related to one growth measure may exert negative effect on a different growth measure. Overall, financial indicators alone can serve as good proxy of growth and yield adequate predictive power of the models. The paper sheds light on both methodology and conceptual framework of enterprise growth by using a range of variables which serve as a proxy for the multitude of internal and external determinants, but are unlike them, accessible, available, exact and free of perceptual nuances in building up the model. Selection of the growth measure seems to have significant impact on the implications and recommendations related to growth. Furthermore, the paper points out to potential pitfalls of measuring and predicting growth. Overall, the results and the implications of the study are relevant for advancing academic debates on growth-related methodology, and can contribute to evidence-based decisions of policy makers.

A Distributed Cryptographically Generated Address Computing Algorithm for Secure Neighbor Discovery Protocol in IPv6

Due to shortage in IPv4 addresses, transition to IPv6 has gained significant momentum in recent years. Like Address Resolution Protocol (ARP) in IPv4, Neighbor Discovery Protocol (NDP) provides some functions like address resolution in IPv6. Besides functionality of NDP, it is vulnerable to some attacks. To mitigate these attacks, Internet Protocol Security (IPsec) was introduced, but it was not efficient due to its limitation. Therefore, SEND protocol is proposed to automatic protection of auto-configuration process. It is secure neighbor discovery and address resolution process. To defend against threats on NDP’s integrity and identity, Cryptographically Generated Address (CGA) and asymmetric cryptography are used by SEND. Besides advantages of SEND, its disadvantages like the computation process of CGA algorithm and sequentially of CGA generation algorithm are considerable. In this paper, we parallel this process between network resources in order to improve it. In addition, we compare the CGA generation time in self-computing and distributed-computing process. We focus on the impact of the malicious nodes on the CGA generation time in the network. According to the result, although malicious nodes participate in the generation process, CGA generation time is less than when it is computed in a one-way. By Trust Management System, detecting and insulating malicious nodes is easier.

Investigation of Regional Differences in Strong Ground Motions for the Iranian Plateau

Regional variations in strong ground motions for the Iranian Plateau have been investigated by using a simple statistical method called Analysis of Variance (ANOVA). In this respect, a large database consisting of 1157 records occurring within the Iranian Plateau with moment magnitudes of greater than or equal to 5 and Joyner-Boore distances up to 200 km has been considered. Geometric averages of horizontal peak ground accelerations (PGA) as well as 5% damped linear elastic response spectral accelerations (SA) at periods of 0.2, 0.5, 1.0, and 2.0 sec are used as strong motion parameters. The initial database is divided into two different datasets, for Northern Iran (NI) and Central and Southern Iran (CSI). The comparison between strong ground motions of these two regions reveals that there is no evidence for significant differences; therefore, data from these two regions may be combined to estimate the unknown coefficients of attenuation relationships.

Personnel Marketing as Perceived by HR Managers in Czech Republic: Results of a Qualitative Research Study

The article is devoted to the area of personnel marketing. A comprehensive review of scientific literature and articles published predominantly in personnel-oriented journals was carried out, followed by a qualitative exploratory research with the aim to explore and explain the perception of personnel marketing. Due to the lack of research in this field in Czech Republic, we have focused on Czech HR managers, more specifically, on how they understand the tasks of personnel marketing, which tools they use and whether the companies they work for try to be a preferred employer. The answers from our respondents were used to help us determine what is important within this field. All of the respondents strive to be a preferred employer and try to achieve it by using an extensive range of marketing tools. The most frequently used tools are advertising, job fairs presentations, employee care and employer brand promotion.

Feasibility Study of MongoDB and Radio Frequency Identification Technology in Asset Tracking System

Taking into consideration the real time situation specifically the higher academic institutions, small, medium to large companies, public to private sectors and the remaining sectors, do experience the inventory or asset shrinkages due to theft, loss or even inventory tracking errors. This happening is due to a zero or poor security systems and measures being taken and implemented in their organizations. Henceforth, implementing the Radio Frequency Identification (RFID) technology into any manual or existing web-based system or web application can simply deter and will eventually solve certain major issues to serve better data retrieval and data access. Having said, this manual or existing system can be enhanced into a mobile-based system or application. In addition to that, the availability of internet connections can aid better services of the system. Such involvement of various technologies resulting various privileges to individuals or organizations in terms of accessibility, availability, mobility, efficiency, effectiveness, real-time information and also security. This paper will look deeper into the integration of mobile devices with RFID technologies with the purpose of asset tracking and control. Next, it is to be followed by the development and utilization of MongoDB as the main database to store data and its association with RFID technology. Finally, the development of a web based system which can be viewed in a mobile based formation with the aid of Hypertext Preprocessor (PHP), MongoDB, Hyper-Text Markup Language 5 (HTML5), Android, JavaScript and AJAX programming language.

HEXAFLY-INT Project: Design of a High Speed Flight Experiment

Thanks to a coordinated funding by the European Space Agency (ESA) and the European Commission (EC) within the 7th framework program, the High-Speed Experimental Fly Vehicles – International (HEXAFLY-INT) project is aimed at the flight validation of hypersonics technologies enabling future trans-atmospheric flights. The project, which is currently involving partners from Europe, Russian Federation and Australia operating under ESA/ESTEC coordination, will achieve the goal of designing, manufacturing, assembling and flight testing an unpowered high speed vehicle in a glider configuration by 2018. The main technical challenges of the project are specifically related to the design of the vehicle gliding configuration and to the complexity of integrating breakthrough technologies with standard aeronautical technologies, e.g. high temperature protection system and airframe cold structures. Also, the sonic boom impact, which is one of the environmental challenges of the high speed flight, will be assessed. This paper provides a comprehensive and detailed update on all the current projects activities carried out to date on both the vehicle and mission design.

The Effect of Different Level Crop Load and Humic Substance Applications on Yield and Yield Components of Alphonse Lavallee Grape Cultivar

This study was carried out to investigate effects of Control (C), 18 bud/vine, 23 bud/vine, 28 bud/vine, 18 bud/vine + TKI-Humas (soil), 23 bud/vine + TKI-Humas (soil), 28 bud/vine + TKI-Humas (soil) applications on yield and yield components of Alphonse Lavallee grape cultivar. The results were obtained as the highest cluster weight (302.31 g) with 18 bud/vine application; the highest berry weight (6.31 g) with 23 bud/vine + TKI-Humas (soil) and (6.79 g) with 28 bud/vine + TKI-Humas (soil) applications; the highest maturity index (36.95) with 18 bud/vine + TKI-Humas (soil) application; the highest L* color intensity (33.99) with 18 bud/vine + TKI-Humas (soil); the highest a* color intensity (1.53) with 23 bud/vine + TKI-Humas (soil) application. The effects of applications on grape fresh yield, grape juice yield and b* color intensity values were not found statistically significant.

Magneto-Thermo-Mechanical Analysis of Electromagnetic Devices Using the Finite Element Method

Fundamental basics of pure and applied research in the area of magneto-thermo-mechanical numerical analysis and design of innovative electromagnetic devices (modern induction heaters, novel thermoelastic actuators, rotating electrical machines, induction cookers, electrophysical devices) are elaborated. Thus, mathematical models of magneto-thermo-mechanical processes in electromagnetic devices taking into account main interactions of interrelated phenomena are developed. In addition, graphical representation of coupled (multiphysics) phenomena under consideration is proposed. Besides, numerical techniques for nonlinear problems solution are developed. On this base, effective numerical algorithms for solution of actual problems of practical interest are proposed, validated and implemented in applied 2D and 3D computer codes developed. Many applied problems of practical interest regarding modern electrical engineering devices are numerically solved. Investigations of the influences of various interrelated physical phenomena (temperature dependences of material properties, thermal radiation, conditions of convective heat transfer, contact phenomena, etc.) on the accuracy of the electromagnetic, thermal and structural analyses are conducted. Important practical recommendations on the choice of rational structures, materials and operation modes of electromagnetic devices under consideration are proposed and implemented in industry.

Use of Visualization Techniques for Active Learning Engagement in Environmental Science Engineering Courses

Active learning strategies have completely rewritten the concept of teaching and learning. Academicians have clocked back to Socratic approaches of questioning. Educators have started implementing active learning strategies for effective learning with the help of tools and technology. As Generation-Y learners are mostly visual, engaging them using visualization techniques play a vital role in their learning process. The facilitator has an important role in intrinsically motivating the learners using different approaches to create self-learning interests. Different visualization techniques were used along with lectures to help students understand and appreciate the concepts. Anonymous feedback was collected from learners. The consolidated report shows that majority of learners accepted the usage of visualization techniques was helpful in understanding concepts as well as create interest in learning the course. This study helps to understand, how the use of visualization techniques help the facilitator to engage learners effectively as well create and intrinsic motivation for their learning.

A Study on Holosen-Pleistosen Sedimentology of Morphotectonic Structure and Seismicity of Gökova Bay

In this research which has been prepared to show the relationship between Gökova Bay’s morphotectonic structure and seismicity, it is clear that there are many active faults in the region. The existence of a thick sedimentary accumulation since Late Quaternary times is obvious as a result of the geophysical workings in the region and the interpretation of seismic data which has been planning to be taken from the Bay. In the regions which have been tectonically active according to the interpretation of the taken data, the existence of the successive earthquakes in the last few years is remarkable. By analyzing large earthquakes affecting the areas remaining inside the sediments in West Anatolian Collapse System, this paper aims to reveal the fault systems constituting earthquakes with the information obtained from this study and to determine seismicity of the present residential areas right next to them. It is also aimed to anticipate the measures to be taken against possible earthquake hazards, to identify these areas posing a risk in terms of residential and urban planning and to determine at least partly the characteristics of the basin.

Effect of Environmental Factors on Photoreactivation of Microorganisms under Indoor Conditions

Ultraviolet (UV) disinfection causes damage to the DNA or RNA of microorganisms, but many microorganisms can repair this damage after exposure to near-UV or visible wavelengths (310–480 nm) by a mechanism called photoreactivation. Photoreactivation is gaining more attention because it can reduce the efficiency of UV disinfection of wastewater several hours after treatment. The focus of many photoreactivation research activities on the single species has caused a considerable lack in knowledge about complex natural communities of microorganisms and their response to UV treatment. In this research, photoreactivation experiments were carried out on the influent of the UV disinfection unit at a municipal wastewater treatment plant (WWTP) in Edmonton, Alberta after exposure to a Medium-Pressure (MP) UV lamp system to evaluate the effect of environmental factors on photoreactivation of microorganisms in the actual municipal wastewater. The effect of reactivation fluence, temperature, and river water on photoreactivation of total coliforms was examined under indoor conditions. The results showed that higher effective reactivation fluence values (up to 20 J/cm2) and higher temperatures (up to 25 °C) increased the photoreactivation of total coliforms. However, increasing the percentage of river in the mixtures of the effluent and river water decreased the photoreactivation of the mixtures. The results of this research can help the municipal wastewater treatment industry to examine the environmental effects of discharging their effluents into receiving waters.

Volunteers’ Preparedness for Natural Disasters and EVANDE Project

The role of volunteers in disaster management is of decisive importance and the need of their involvement is well recognized, both for prevention measures and for disaster management. During major catastrophes, whereas professional personnel are outsourced, the role of volunteers is crucial. In Greece experience has shown that various groups operating in the civil protection mechanism like local administration staff or volunteers, in many cases do not have the necessary knowledge and information on best practices to act against natural disasters. One of the major problems is the lack of volunteers’ education and training. In the above given framework, this paper presents the results of a survey aimed to identify the level of education and preparedness of civil protection volunteers in Greece. Furthermore, the implementation of earthquake protection measures at individual, family and working level, are explored. More specifically, the survey questionnaire investigates issues regarding pre-earthquake protection actions, appropriate attitudes and behaviors during an earthquake and existence of contingency plans in the workplace. The questionnaires were administered to citizens from different regions of the country and who attend the civil protection training program: “Protect Myself and Others”. A closed-form questionnaire was developed for the survey, which contained questions regarding the following: a) knowledge of self-protective actions; b) existence of emergency planning at home; c) existence of emergency planning at workplace (hazard mitigation actions, evacuation plan, and performance of drills); and, d) respondents` perception about their level of earthquake preparedness. The results revealed a serious lack of knowledge and preparedness among respondents. Taking into consideration the aforementioned gap and in order to raise awareness and improve preparedness and effective response of volunteers acting in civil protection, the EVANDE project was submitted and approved by the European Commission (EC). The aim of that project is to educate and train civil protection volunteers on the most serious natural disasters, such as forest fires, floods, and earthquakes, and thus, increase their performance.

Entrepreneurship and the Discovery and Exploitation of Business Opportunities: Empirical Evidence from the Malawian Tourism Sector

This paper identifies a research gap in the literature on tourism entrepreneurship in Malawi, Africa, and investigates how entrepreneurs from the Malawian tourism sector discover and exploit business opportunities. In particular, the importance of prior experience and business networks in the opportunity development process is debated. Another area of empirical research examined here is the opportunity recognition-venture creation sequence. While Malawi presents fruitful business opportunities, exploiting these opportunities into fully realized business ideas is a real challenge due to the country’s difficult business environment and poor promotional and marketing efforts. The study concludes by calling for further research in Sub-Saharan Africa in order to develop our understanding of entrepreneurship in this (African) context.

The Stability Analysis and New Torque Control Strategy of Direct-Driven PMSG Wind Turbines

This paper expounds on the direct-driven PMSG wind power system control strategy, and analyses the stability conditions of the system. The direct-driven PMSG wind power system may generate the intense mechanical vibration, when wind speed changes dramatically. This paper proposes a new type of torque control strategy, which increases the system damping effectively, mitigates mechanical vibration of the system, and enhances the stability conditions of the system. The simulation results verify the reliability of the new torque control strategy.

Effect of Installation of Long Cylindrical External Store on Performance, Stability, Control and Handling Qualities of Light Transport Aircraft

This paper presents the effect of installation of cylindrical external store on the performance, stability, control and handling qualities of light transport category aircraft. A pair of long cylindrical store was installed symmetrically on either side of the fuselage (port and starboard) ahead of the wing and below the fuselage bottom surface running below pilot and co-pilot window. The cylindrical store was installed as hanging from aircraft surface through specially designed brackets. The adjoining structure was sufficiently reinforced for bearing aerodynamic loads. The length to diameter ratio of long cylindrical store was ~20. Based on academic studies and flow simulation analysis, a considerable detrimental effect on single engine second segment climb performance was found which was later validated through extensive flight testing exercise. The methodology of progressive flight envelope opening was adopted. The certification was sought from Regional airworthiness authorities and for according approval.

Edge Detection Using Multi-Agent System: Evaluation on Synthetic and Medical MR Images

Recent developments on multi-agent system have brought a new research field on image processing. Several algorithms are used simultaneously and improved in deferent applications while new methods are investigated. This paper presents a new automatic method for edge detection using several agents and many different actions. The proposed multi-agent system is based on parallel agents that locally perceive their environment, that is to say, pixels and additional environmental information. This environment is built using Vector Field Convolution that attract free agent to the edges. Problems of partial, hidden or edges linking are solved with the cooperation between agents. The presented method was implemented and evaluated using several examples on different synthetic and medical images. The obtained experimental results suggest that this approach confirm the efficiency and accuracy of detected edge.

Magnitude and Determinants of Overweight and Obesity among High School Adolescents in Addis Ababa, Ethiopia

Background: The 2004 World Health Assembly called for specific actions to halt the overweight and obesity epidemic that is currently penetrating urban populations in the developing world. Adolescents require particular attention due to their vulnerability to develop obesity and the fact that adolescent weight tracks strongly into adulthood. However, there is scarcity of information on the modifiable risk factors to be targeted for primary intervention among urban adolescents in Ethiopia. This study was aimed at determining the magnitude and risk factors of overweight and obesity among high school adolescents in Addis Ababa. Methods: An institution-based cross-sectional study was conducted in February and March 2014 on 456 randomly selected adolescents from 20 high schools in Addis Ababa city.  Demographic data and other risk factors of overweight and obesity were collected using self-administered structured questionnaire, whereas anthropometric measurements of weight and height were taken using calibrated equipment and standardized techniques. The WHO STEPS instrument for chronic disease risk was applied to assess dietary habit and physical activity. Overweight and obesity status was determined based on BMI-for-age percentiles of WHO 2007 reference population. Results: The prevalence rates of overweight, obesity, and overall overweight/ obesity among high school adolescents in Addis Ababa were 9.7% (95%CI = 6.9-12.4%), 4.2% (95%CI = 2.3-6.0%), and 13.9% (95%CI = 10.6-17.1%), respectively. Overweight/obesity prevalence was highest among female adolescents, in private schools, and in the higher wealth category. In multivariable regression model, being female [AOR(95%CI) = 5.4(2.5,12.1)], being from private school [AOR(95%CI) = 3.0(1.4,6.2)], having >3 regular meals [AOR(95%CI) = 4.0(1.3,13.0)], consumption of sweet foods [AOR(95%CI) = 5.0(2.4,10.3)] and spending >3 hours/day sitting [AOR(95%CI) = 3.5(1.7,7.2)] were found to increase overweight/ obesity risk, whereas high Total Physical Activity level [AOR(95%CI) = 0.21(0.08,0.57)] and better nutrition knowledge [AOR(95%CI) = 0.160.07,0.37)] were found protective. Conclusions: More than one in ten of the high school adolescents were affected by overweight/obesity with dietary habit and physical activity are important modifiable risk factors. Well-tailored nutrition education program targeting lifestyle change should be initiated with more emphasis to female adolescents and students in private schools.

Specialized Reduced Models of Dynamic Flows in 2-Stroke Engines

The complexity of scavenging by ports and its impact on engine efficiency create the need to understand and to model it as realistically as possible. However, there are few empirical scavenging models and these are highly specialized. In a design optimization process, they appear very restricted and their field of use is limited. This paper presents a comparison of two methods to establish and reduce a model of the scavenging process in 2-stroke diesel engines. To solve the lack of scavenging models, a CFD model has been developed and is used as the referent case. However, its large size requires a reduction. Two techniques have been tested depending on their fields of application: The NTF method and neural networks. They both appear highly appropriate drastically reducing the model’s size (over 90% reduction) with a low relative error rate (under 10%). Furthermore, each method produces a reduced model which can be used in distinct specialized fields of application: the distribution of a quantity (mass fraction for example) in the cylinder at each time step (pseudo-dynamic model) or the qualification of scavenging at the end of the process (pseudo-static model).