Artificial Neural Network Application on Ti/Al Joint Using Laser Beam Welding – A Review

Today automobile and aerospace industries realise Laser Beam Welding for a clean and non contact source of heating and fusion for joining of sheets. The welding performance is mainly based on by the laser welding parameters. Some concepts related to Artificial Neural Networks and how can be applied to model weld bead geometry and mechanical properties in terms of equipment parameters are reported in order to evaluate the accuracy and compare it with traditional modeling schemes. This review reveals the output features of Titanium and Aluminium weld bead geometry and mechanical properties such as ultimate tensile strength, yield strength, elongation and reduction of the area of the weld using Artificial Neural Network.

Research of Ring MEMS Rate Integrating Gyroscopes

This paper To get the angle value with a MEMS rate gyroscope in some specific field, the usual method is to make an integral operation to the rate output, which will lead the error cumulating effect. So the rate gyro is not suitable. MEMS rate integrating gyroscope (MRIG) will solve this problem. A DSP system has been developed to implement the control arithmetic. The system can measure the angle of rotation directly by the control loops that make the sensor work in whole-angle mode. Modeling the system with MATLAB, desirable results of angle outputs are got, which prove the feasibility of the control arithmetic.

Spurious Crests in Second-Order Waves

Occurrences of spurious crests on the troughs of large, relatively steep second-order Stokes waves are anomalous and not an inherent characteristic of real waves. Here, the effects of such occurrences on the statistics described by the standard second-order stochastic model are examined theoretically and by way of simulations. Theoretical results and simulations indicate that when spurious occurrences are sufficiently large, the standard model leads to physically unrealistic surface features and inaccuracies in the statistics of various surface features, in particular, the troughs and thus zero-crossing heights of large waves. Whereas inaccuracies can be fairly noticeable for long-crested waves in both deep and shallower depths, they tend to become relatively insignificant in directional waves.

Preoperative to Intraoperative Space Registration for Management of Head Injuries

A registration framework for image-guided robotic surgery is proposed for three emergency neurosurgical procedures, namely Intracranial Pressure (ICP) Monitoring, External Ventricular Drainage (EVD) and evacuation of a Chronic Subdural Haematoma (CSDH). The registration paradigm uses CT and white light as modalities. This paper presents two simulation studies for a preliminary evaluation of the registration protocol: (1) The loci of the Target Registration Error (TRE) in the patient-s axial, coronal and sagittal views were simulated based on a Fiducial Localisation Error (FLE) of 5 mm and (2) Simulation of the actual framework using projected views from a surface rendered CT model to represent white light images of the patient. Craniofacial features were employed as the registration basis to map the CT space onto the simulated intraoperative space. Photogrammetry experiments on an artificial skull were also performed to benchmark the results obtained from the second simulation. The results of both simulations show that the proposed protocol can provide a 5mm accuracy for these neurosurgical procedures.

On the Learning of Causal Relationships between Banks in Saudi Equities Market Using Ensemble Feature Selection Methods

Financial forecasting using machine learning techniques has received great efforts in the last decide . In this ongoing work, we show how machine learning of graphical models will be able to infer a visualized causal interactions between different banks in the Saudi equities market. One important discovery from such learned causal graphs is how companies influence each other and to what extend. In this work, a set of graphical models named Gaussian graphical models with developed ensemble penalized feature selection methods that combine ; filtering method, wrapper method and a regularizer will be shown. A comparison between these different developed ensemble combinations will also be shown. The best ensemble method will be used to infer the causal relationships between banks in Saudi equities market.

Bearing Fault Feature Extraction by Recurrence Quantification Analysis

In rotating machinery one of the critical components that is prone to premature failure is the rolling bearing. Consequently, early warning of an imminent bearing failure is much critical to the safety and reliability of any high speed rotating machines. This study is concerned with the application of Recurrence Quantification Analysis (RQA) in fault detection of rolling element bearings in rotating machinery. Based on the results from this study it is reported that the RQA variable, percent determinism, is sensitive to the type of fault investigated and therefore can provide useful information on bearing damage in rolling element bearings.

Cardiopulmonary Exercise Testing in Young Asthmatic Children Ages 6-10 Years Old

The aim of this study was to establish the feasibility of a minute incremental exercise testing protocol in young asthma children. Twenty-two children with clinically diagnosed mild to moderate asthma volunteered to participate. The maximum incremental exercise test was performed using a cycle ergometer with an electromagnetic braking. A warm-up unloaded for 2 minutes then the workload was started at 40 watts for 2 minutes, and then stepwise increments of 8 watts per 2 minutes were applied. The pedaling frequency was set at 50 rpm. Ventilation and gas exchange were measured with a breath-by-breath automatic metabolic measurement system. Results showed that this test was well tolerated by all asthmatic children. Most of the children reached the VO2 plateau and satisfied the criteria for maximal respiratory exchange ratio of ≥ 1. This Study demonstrated that this testing protocol was suitable for young asthmatic children.

Support Vector Machine Prediction Model of Early-stage Lung Cancer Based on Curvelet Transform to Extract Texture Features of CT Image

Purpose: To explore the use of Curvelet transform to extract texture features of pulmonary nodules in CT image and support vector machine to establish prediction model of small solitary pulmonary nodules in order to promote the ratio of detection and diagnosis of early-stage lung cancer. Methods: 2461 benign or malignant small solitary pulmonary nodules in CT image from 129 patients were collected. Fourteen Curvelet transform textural features were as parameters to establish support vector machine prediction model. Results: Compared with other methods, using 252 texture features as parameters to establish prediction model is more proper. And the classification consistency, sensitivity and specificity for the model are 81.5%, 93.8% and 38.0% respectively. Conclusion: Based on texture features extracted from Curvelet transform, support vector machine prediction model is sensitive to lung cancer, which can promote the rate of diagnosis for early-stage lung cancer to some extent.

Learning of Class Membership Values by Ellipsoidal Decision Regions

A novel method of learning complex fuzzy decision regions in the n-dimensional feature space is proposed. Through the fuzzy decision regions, a given pattern's class membership value of every class is determined instead of the conventional crisp class the pattern belongs to. The n-dimensional fuzzy decision region is approximated by union of hyperellipsoids. By explicitly parameterizing these hyperellipsoids, the decision regions are determined by estimating the parameters of each hyperellipsoid.Genetic Algorithm is applied to estimate the parameters of each region component. With the global optimization ability of GA, the learned decision region can be arbitrarily complex.

Arabic Character Recognition using Artificial Neural Networks and Statistical Analysis

In this paper, an Arabic letter recognition system based on Artificial Neural Networks (ANNs) and statistical analysis for feature extraction is presented. The ANN is trained using the Least Mean Squares (LMS) algorithm. In the proposed system, each typed Arabic letter is represented by a matrix of binary numbers that are used as input to a simple feature extraction system whose output, in addition to the input matrix, are fed to an ANN. Simulation results are provided and show that the proposed system always produces a lower Mean Squared Error (MSE) and higher success rates than the current ANN solutions.

Feature Weighting and Selection - A Novel Genetic Evolutionary Approach

A feature weighting and selection method is proposed which uses the structure of a weightless neuron and exploits the principles that govern the operation of Genetic Algorithms and Evolution. Features are coded onto chromosomes in a novel way which allows weighting information regarding the features to be directly inferred from the gene values. The proposed method is significant in that it addresses several problems concerned with algorithms for feature selection and weighting as well as providing significant advantages such as speed, simplicity and suitability for real-time systems.

P-ACO Approach to Assignment Problem in FMSs

One of the most important problems in production planning of flexible manufacturing system (FMS) is machine tool selection and operation allocation problem that directly influences the production costs and times .In this paper minimizing machining cost, set-up cost and material handling cost as a multi-objective problem in flexible manufacturing systems environment are considered. We present a 0-1 integer linear programming model for the multiobjective machine tool selection and operation allocation problem and due to the large scale nature of the problem, solving the problem to obtain optimal solution in a reasonable time is infeasible, Paretoant colony optimization (P-ACO) approach for solving the multiobjective problem in reasonable time is developed. Experimental results indicate effectiveness of the proposed algorithm for solving the problem.

Comparative Study of Filter Characteristics as Statistical Vocal Correlates of Clinical Psychiatric State in Human

Acoustical properties of speech have been shown to be related to mental states of speaker with symptoms: depression and remission. This paper describes way to address the issue of distinguishing depressed patients from remitted subjects based on measureable acoustics change of their spoken sound. The vocal-tract related frequency characteristics of speech samples from female remitted and depressed patients were analyzed via speech processing techniques and consequently, evaluated statistically by cross-validation with Support Vector Machine. Our results comparatively show the classifier's performance with effectively correct separation of 93% determined from testing with the subjectbased feature model and 88% from the frame-based model based on the same speech samples collected from hospital visiting interview sessions between patients and psychiatrists.

Incremental Mining of Shocking Association Patterns

Association rules are an important problem in data mining. Massively increasing volume of data in real life databases has motivated researchers to design novel and incremental algorithms for association rules mining. In this paper, we propose an incremental association rules mining algorithm that integrates shocking interestingness criterion during the process of building the model. A new interesting measure called shocking measure is introduced. One of the main features of the proposed approach is to capture the user background knowledge, which is monotonically augmented. The incremental model that reflects the changing data and the user beliefs is attractive in order to make the over all KDD process more effective and efficient. We implemented the proposed approach and experiment it with some public datasets and found the results quite promising.

Improved Tropical Wood Species Recognition System based on Multi-feature Extractor and Classifier

An automated wood recognition system is designed to classify tropical wood species.The wood features are extracted based on two feature extractors: Basic Grey Level Aura Matrix (BGLAM) technique and statistical properties of pores distribution (SPPD) technique. Due to the nonlinearity of the tropical wood species separation boundaries, a pre classification stage is proposed which consists ofKmeans clusteringand kernel discriminant analysis (KDA). Finally, Linear Discriminant Analysis (LDA) classifier and KNearest Neighbour (KNN) are implemented for comparison purposes. The study involves comparison of the system with and without pre classification using KNN classifier and LDA classifier.The results show that the inclusion of the pre classification stage has improved the accuracy of both the LDA and KNN classifiers by more than 12%.

High-rate Wastewater Treatment by a Shaft-type Activated Sludge Reactor

A shaft-type activated sludge reactor has been developed in order to study the feasibility of high-rate wastewater treatment. The reactor having volume of about 14.5 L was operated with the acclimated mixed activated sludge under batch and continuous mode using a synthetic wastewater as feed. The batch study was performed with varying chemical oxygen demand (COD) concentrations of 1000–3500 mg·L-1 for a batch period up to 9 h. The kinetic coefficients: Ks, k, Y and kd were obtained as 2040.2 mg·L-1 and 0.105 h-1, 0.878 and 0.0025 h-1 respectively from Monod-s approach. The continuous study showed a stable and steady state operation for a hydraulic retention time (HRT) of 8 h and influent COD of about 1000 mg·L-1. A maximum COD removal efficiency of about 80% was attained at a COD loading rate and food-tomicroorganism (F/M) ratio (COD basis) of 3.42 kg·m-3d-1 and 1.0 kg·kg-1d-1 respectively under a HRT of 8 h. The reactor was also found to handle COD loading rate and F/M ratio of 10.8 kg·m-3d-1 and 2.20 kg·kg-1d-1 respectively showing a COD removal efficiency of about 46%.

Adsorption of Cadmium onto Activated and Non-Activated Date Pits

In this project cadmium ions were adsorbed from aqueous solutions onto either date pits; a cheap agricultural and nontoxic material, or chemically activated carbon prepared from date pits using phosphoric acid. A series of experiments were conducted in a batch adsorption technique to assess the feasibility of using the prepared adsorbents. The effects of the process variables such as initial cadmium ions concentration, contact time, solution pH and adsorbent dose on the adsorption capacity of both adsorbents were studied. The experimental data were tested using different isotherm models such as Langmuir, Freundlich, Tempkin and Dubinin- Radushkevich. The results showed that although the equilibrium data could be described by all models used, Langmuir model gave slightly better results when using activated carbon while Freundlich model, gave better results with date pits.

How Celebrities can be used in Advertising to the Best Advantage?

The ever increasing product diversity and competition on the market of goods and services has dictated the pace of growth in the number of advertisements. Despite their admittedly diminished effectiveness over the recent years, advertisements remain the favored method of sales promotion. Consequently, the challenge for an advertiser is to explore every possible avenue of making an advertisement more noticeable, attractive and impellent for consumers. One way to achieve this is through invoking celebrity endorsements. On the one hand, the use of a celebrity to endorse a product involves substantial costs, however, on the other hand, it does not immediately guarantee the success of an advertisement. The question of how celebrities can be used in advertising to the best advantage is therefore of utmost importance. Celebrity endorsements have become commonplace: empirical evidence indicates that approximately 20 to 25 per cent of advertisements feature some famous person as a product endorser. The popularity of celebrity endorsements demonstrates the relevance of the topic, especially in the context of the current global economic downturn, when companies are forced to save in order to survive, yet simultaneously to heavily invest in advertising and sales promotion. The issue of the effective use of celebrity endorsements also figures prominently in the academic discourse. The study presented below is thus aimed at exploring what qualities (characteristics) of a celebrity endorser have an impact on the ffectiveness of the advertisement in which he/she appears and how.

A Relational Case-Based Reasoning Framework for Project Delivery System Selection

An appropriate project delivery system (PDS) is crucial to the success of a construction projects. Case-based Reasoning (CBR) is a useful support for PDS selection. However, the traditional CBR approach represents cases as attribute-value vectors without taking relations among attributes into consideration, and could not calculate the similarity when the structures of cases are not strictly same. Therefore, this paper solves this problem by adopting the Relational Case-based Reasoning (RCBR) approach for PDS selection, considering both the structural similarity and feature similarity. To develop the feature terms of the construction projects, the criteria and factors governing PDS selection process are first identified. Then feature terms for the construction projects are developed. Finally, the mechanism of similarity calculation and a case study indicate how RCBR works for PDS selection. The adoption of RCBR in PDS selection expands the scope of application of traditional CBR method and improves the accuracy of the PDS selection system.

Correlation-based Feature Selection using Ant Colony Optimization

Feature selection has recently been the subject of intensive research in data mining, specially for datasets with a large number of attributes. Recent work has shown that feature selection can have a positive effect on the performance of machine learning algorithms. The success of many learning algorithms in their attempts to construct models of data, hinges on the reliable identification of a small set of highly predictive attributes. The inclusion of irrelevant, redundant and noisy attributes in the model building process phase can result in poor predictive performance and increased computation. In this paper, a novel feature search procedure that utilizes the Ant Colony Optimization (ACO) is presented. The ACO is a metaheuristic inspired by the behavior of real ants in their search for the shortest paths to food sources. It looks for optimal solutions by considering both local heuristics and previous knowledge. When applied to two different classification problems, the proposed algorithm achieved very promising results.