Efficient Implementation of Serial and Parallel Support Vector Machine Training with a Multi-Parameter Kernel for Large-Scale Data Mining

This work deals with aspects of support vector learning for large-scale data mining tasks. Based on a decomposition algorithm that can be run in serial and parallel mode we introduce a data transformation that allows for the usage of an expensive generalized kernel without additional costs. In order to speed up the decomposition algorithm we analyze the problem of working set selection for large data sets and analyze the influence of the working set sizes onto the scalability of the parallel decomposition scheme. Our modifications and settings lead to improvement of support vector learning performance and thus allow using extensive parameter search methods to optimize classification accuracy.

Enhancing Learning Experiences in Outcomebased Higher Education: A Step towards Student Centered Learning

Bologna process has influenced enhancing studentcentered learning in Estonian higher education since 2009, but there is no information about what helps or hinders students to achieve learning outcomes and how quality of student-centered learning might be improved. The purpose of this study is to analyze two questions from outcome-based course evaluation questionnaire which is used in Estonian Entrepreneurship University of Applied Sciences. In this qualitative research, 384 students from 22 different courses described what helped and hindered them to achieve learning outcomes. The analysis showed that the aspects that hinder students to achieve learning outcomes are mostly personal: time management, family and personal matters, motivation and non-academic activities. The results indicate that students- learning is commonly supported by school, where teacher, teaching and characteristics of teaching methods help mostly to achieve learning outcomes, also learning material, practical assignments and independent study was brought up as one of the key elements.

Optimal Design of Two-Channel Recursive Parallelogram Quadrature Mirror Filter Banks

This paper deals with the optimal design of two-channel recursive parallelogram quadrature mirror filter (PQMF) banks. The analysis and synthesis filters of the PQMF bank are composed of two-dimensional (2-D) recursive digital all-pass filters (DAFs) with nonsymmetric half-plane (NSHP) support region. The design problem can be facilitated by using the 2-D doubly complementary half-band (DC-HB) property possessed by the analysis and synthesis filters. For finding the coefficients of the 2-D recursive NSHP DAFs, we appropriately formulate the design problem to result in an optimization problem that can be solved by using a weighted least-squares (WLS) algorithm in the minimax (L∞) optimal sense. The designed 2-D recursive PQMF bank achieves perfect magnitude response and possesses satisfactory phase response without requiring extra phase equalizer. Simulation results are also provided for illustration and comparison.

Supportability Analysis in LCI Environment

Starting from the basic pillars of the supportability analysis this paper queries its characteristics in LCI (Life Cycle Integration) environment. The research methodology contents a review of modern logistics engineering literature with the objective to collect and synthesize the knowledge relating to standards of supportability design in e-logistics environment. The results show that LCI framework has properties which are in fully compatibility with the requirement of simultaneous logistics support and productservice bundle design. The proposed approach is a contribution to the more comprehensive and efficient supportability design process. Also, contributions are reflected through a greater consistency of collected data, automated creation of reports suitable for different analysis, as well as the possibility of their customization according with customer needs. In addition to this, convenience of this approach is its practical use in real time. In a broader sense, LCI allows integration of enterprises on a worldwide basis facilitating electronic business.

From F2F to Online Sessions: Changing Pattern of Instructions in Open and Distance Learning in India

This paper presents an assessment study conducted among the distance learners in India. Open and distance learning systems have traveled a long way since its inception and its journey has witnessed the evolution and adoption of different generations of technology. This study focuses on the distant learners in India. Sampling for this study has been derived from the mass enrollment from Tamil Nadu area, a southern state of India. Learners were chosen from dual mode universities, private universities, Tamil Nadu Open University and IGNOU. The main focus of the study is to examine the coverage and appropriation of students support services and learning aids. It explores two aspects: the facilities available and the awareness and use of such services. It includes, self-learning materials, face-to-face counseling, multimedia learning materials, website, e-learning, radio and television services etc. While exploring the student-s perspective on these learning aspects, it is important to understand the perspectives of the teachers. Two different interests are visible among the teachers. Majority of the teachers support faceto- face counseling. However, the young teachers are in favour of online learning and multimedia supports in teaching. Through the awareness is somewhat high, the actual participation in online is very low. This is due to the inadequate infrastructure as well as the traditional attitudes of the teachers. Still the face-to-face sessions remain popular than online.

Role of GIS in Distribution Power Systems

With the prevalence of computer and development of information technology, Geographic Information Systems (GIS) have long used for a variety of applications in electrical engineering. GIS are designed to support the analysis, management, manipulation and mapping of spatial data. This paper presents several usages of GIS in power utilities such as automated route selection for the construction of new power lines which uses a dynamic programming model for route optimization, load forecasting and optimizing planning of substation-s location and capacity with comprehensive algorithm which involves an accurate small-area electric load forecasting procedure and simulates the different cost functions of substations.

Modeling Approach to the Specific Tactical Activities

The contribution deals with current or potential approaches to the modeling and optimization of tactical activities. This issue takes on importance in recent times, particularly with the increasing trend of digitized battlefield, the development of C4ISR systems and intention to streamline the command and control process at the lowest levels of command. From fundamental and philosophically point of view, this new approaches seek to significantly upgrade and enhance the decision-making process of the tactical commanders.

Multi-Criteria Decision Analysis in Planning of Asbestos-Containing Waste Management

Environmental decision making, particularly about hazardous waste management, is inherently exposed to a high potential conflict, principally because of the trade-off between sociopolitical, environmental, health and economic factors. The need to plan complex contexts has led to an increasing request for decision analytic techniques as support for the decision process. In this work, alternative systems of asbestos-containing waste management (ACW) in Puglia (Southern Italy) were explored by a multi-criteria decision analysis. In particular, through Analytic Hierarchy Process five alternatives management have been compared and ranked according to their performance and efficiency, taking into account environmental, health and socio-economic aspects. A separated valuation has been performed for different temporal scale. For short period results showed a narrow deviation between the disposal alternatives “mono-material landfill in public quarry" and “dedicate cells in existing landfill", with the best performance of the first one. While for long period “treatment plant to eliminate hazard from asbestos-containing waste" was prevalent, although high energy demand required to achieve the change of crystalline structure. A comparison with results from a participative approach in valuation process might be considered as future development of method application to ACW management.

Computation of the Filtering Properties of Photonic Crystal Waveguide Discontinuities Using the Mode Matching Method

In this paper, the application of the Mode Matching (MM) method in the case of photonic crystal waveguide discontinuities is presented. The structure under consideration is divided into a number of cells, which supports a number of guided and evanescent modes. These modes can be calculated numerically by an alternative formulation of the plane wave expansion method for each frequency. A matrix equation is then formed relating the modal amplitudes at the beginning and at the end of the structure. The theory is highly efficient and accurate and can be applied to study the transmission sensitivity of photonic crystal devices due to fabrication tolerances. The accuracy of the MM method is compared to the Finite Difference Frequency Domain (FDFD) and the Adjoint Variable Method (AVM) and good agreement is observed.

Extraction of Craniofacial Landmarks for Preoperative to Intraoperative Registration

This paper presents the automated methods employed for extracting craniofacial landmarks in white light images as part of a registration framework designed to support three neurosurgical procedures. The intraoperative space is characterised by white light stereo imaging while the preoperative plan is performed on CT scans. The registration aims at aligning these two modalities to provide a calibrated environment to enable image-guided solutions. The neurosurgical procedures can then be carried out by mapping the entry and target points from CT space onto the patient-s space. The registration basis adopted consists of natural landmarks (eye corner and ear tragus). A 5mm accuracy is deemed sufficient for these three procedures and the validity of the selected registration basis in achieving this accuracy has been assessed by simulation studies. The registration protocol is briefly described, followed by a presentation of the automated techniques developed for the extraction of the craniofacial features and results obtained from tests on the AR and FERET databases. Since the three targeted neurosurgical procedures are routinely used for head injury management, the effect of bruised/swollen faces on the automated algorithms is assessed. A user-interactive method is proposed to deal with such unpredictable circumstances.

RBF- based Meshless Method for Free Vibration Analysis of Laminated Composite Plates

The governing differential equations of laminated plate utilizing trigonometric shear deformation theory are derived using energy approach. The governing differential equations discretized by different radial basis functions are used to predict the free vibration behavior of symmetric laminated composite plates. Effect of orthotropy and span to thickness ratio on frequency parameter of simply supported laminated plate is presented. Numerical results show the accuracy and good convergence of radial basis functions.

Mechanical Buckling of Functionally Graded Engesser-Timoshenko Beams Located on a Continuous Elastic Foundation

This paper studies mechanical buckling of functionally graded beams subjected to axial compressive load that is simply supported at both ends lies on a continuous elastic foundation. The displacement field of beam is assumed based on Engesser-Timoshenko beam theory. Applying the Hamilton's principle, the equilibrium equation is established. The influences of dimensionless geometrical parameter, functionally graded index and foundation coefficient on the critical buckling load of beam are presented. To investigate the accuracy of the present analysis, a compression study is carried out with a known data.

Structural Behaviour of Partially Filled Steel Grid Composite Deck

In order to apply partially filled steel grid composite deck as the horizontal supporting structure of various kinds of infrastructures, the variation of its flexural strength according to design parameters such as cross and longitudinal bars constituting the steel grid and the type of shear connection is evaluated and compared experimentally. The result shows that the design sensitivity of the deck to the spacing of the cross bars is insignificant in the case of structure with low risk of punching failure or without load distribution problem. By means of shear connection composed by transverse rebar and longitudinal bar without additional shear stud bolts, the complete interaction between steel grid and concrete slab is able to be achieved and the composite deck can develop its bending resistance capacity.

Establishing of Education Strategy in New Technological Environments with using Student Feedback

According to the new developments in the field of information and communication technologies, the necessity arises for active use of these new technologies in education. It is clear that the integration of technology in education system will be different for primary-higher education or traditional- distance education. In this study, the subject of the integration of technology for distance education was discussed. The subject was taken from the viewpoint of students. With using the information of student feedback about education program in which new technological medias are used, how can survey variables can be separated into the factors as positive, negative and supporter and how can be redesigned education strategy of the higher education associations with the examining the variables of each determinated factor is explained. The paper concludes with the recommendations about the necessitity of working as a group of different area experts and using of numerical methods in establishing of education strategy to be successful.

The Influence of User Involvement and Personal Innovativeness on User Behavior

The search for factors that influence user behavior has remained an important theme for both the academic and practitioner Information Systems Communities. In this paper we examine relevant user behaviors in the phase after adoption and investigate two factors that are expected to influence such behaviors, namely User Involvement (UI) and Personal Innovativeness in IT (PIIT). We conduct a field study to examine how these factors influence postadoption behavior and how they are interrelated. Building on theoretical premises and prior empirical findings, we propose and test two alternative models of the relationship between these factors. Our results reveal that the best explanation of post-adoption behavior is provided by the model where UI and PIIT independently influence post-adoption behavior. Our findings have important implications for research and practice. To that end, we offer directions for future research.

Design Method for Knowledge Base Systems in Education Using COKB-ONT

Nowadays e-Learning is more popular, in Vietnam especially. In e-learning, materials for studying are very important. It is necessary to design the knowledge base systems and expert systems which support for searching, querying, solving of problems. The ontology, which was called Computational Object Knowledge Base Ontology (COB-ONT), is a useful tool for designing knowledge base systems in practice. In this paper, a design method for knowledge base systems in education using COKB-ONT will be presented. We also present the design of a knowledge base system that supports studying knowledge and solving problems in higher mathematics.

Lithofacies Classification from Well Log Data Using Neural Networks, Interval Neutrosophic Sets and Quantification of Uncertainty

This paper proposes a novel approach to the question of lithofacies classification based on an assessment of the uncertainty in the classification results. The proposed approach has multiple neural networks (NN), and interval neutrosophic sets (INS) are used to classify the input well log data into outputs of multiple classes of lithofacies. A pair of n-class neural networks are used to predict n-degree of truth memberships and n-degree of false memberships. Indeterminacy memberships or uncertainties in the predictions are estimated using a multidimensional interpolation method. These three memberships form the INS used to support the confidence in results of multiclass classification. Based on the experimental data, our approach improves the classification performance as compared to an existing technique applied only to the truth membership. In addition, our approach has the capability to provide a measure of uncertainty in the problem of multiclass classification.

Some Investigations on Higher Mathematics Scores for Chinese University Student

To investigate some relations between higher mathe¬matics scores in Chinese graduate student entrance examination and calculus (resp. linear algebra, probability statistics) scores in subject's completion examination of Chinese university, we select 20 students as a sample, take higher mathematics score as a decision attribute and take calculus score, linear algebra score, probability statistics score as condition attributes. In this paper, we are based on rough-set theory (Rough-set theory is a logic-mathematical method proposed by Z. Pawlak. In recent years, this theory has been widely implemented in the many fields of natural science and societal science.) to investigate importance of condition attributes with respective to decision attribute and strength of condition attributes supporting decision attribute. Results of this investigation will be helpful for university students to raise higher mathematics scores in Chinese graduate student entrance examination.

Multi Band Frequency Synthesizer Based on ISPD PLL with Adapted LC Tuned VCO

The 4G front-end transceiver needs a high performance which can be obtained mainly with an optimal architecture and a multi-band Local Oscillator. In this study, we proposed and presented a new architecture of multi-band frequency synthesizer based on an Inverse Sine Phase Detector Phase Locked Loop (ISPD PLL) without any filters and any controlled gain block and associated with adapted multi band LC tuned VCO using a several numeric controlled capacitive branches but not binary weighted. The proposed architecture, based on 0.35μm CMOS process technology, supporting Multi-band GSM/DCS/DECT/ UMTS/WiMax application and gives a good performances: a phase noise @1MHz -127dBc and a Factor Of Merit (FOM) @ 1MHz - 186dB and a wide band frequency range (from 0.83GHz to 3.5GHz), that make the proposed architecture amenable for monolithic integration and 4G multi-band application.

One-Class Support Vector Machines for Protein-Protein Interactions Prediction

Predicting protein-protein interactions represent a key step in understanding proteins functions. This is due to the fact that proteins usually work in context of other proteins and rarely function alone. Machine learning techniques have been applied to predict protein-protein interactions. However, most of these techniques address this problem as a binary classification problem. Although it is easy to get a dataset of interacting proteins as positive examples, there are no experimentally confirmed non-interacting proteins to be considered as negative examples. Therefore, in this paper we solve this problem as a one-class classification problem using one-class support vector machines (SVM). Using only positive examples (interacting protein pairs) in training phase, the one-class SVM achieves accuracy of about 80%. These results imply that protein-protein interaction can be predicted using one-class classifier with comparable accuracy to the binary classifiers that use artificially constructed negative examples.