Embedded Semi-Fragile Signature Based Scheme for Ownership Identification and Color Image Authentication with Recovery

In this paper, a novel scheme is proposed for Ownership Identification and Color Image Authentication by deploying Cryptography & Digital Watermarking. The color image is first transformed from RGB to YST color space exclusively designed for watermarking. Followed by color space transformation, each channel is divided into 4×4 non-overlapping blocks with selection of central 2×2 sub-blocks. Depending upon the channel selected two to three LSBs of each central 2×2 sub-block are set to zero to hold the ownership, authentication and recovery information. The size & position of sub-block is important for correct localization, enhanced security & fast computation. As YS ÔèÑ T so it is suitable to embed the recovery information apart from the ownership and authentication information, therefore 4×4 block of T channel along with ownership information is then deployed by SHA160 to compute the content based hash that is unique and invulnerable to birthday attack or hash collision instead of using MD5 that may raise the condition i.e. H(m)=H(m'). For recovery, intensity mean of 4x4 block of each channel is computed and encoded upto eight bits. For watermark embedding, key based mapping of blocks is performed using 2DTorus Automorphism. Our scheme is oblivious, generates highly imperceptible images with correct localization of tampering within reasonable time and has the ability to recover the original work with probability of near one.

Orthogonal Array Application and Response Surface Method Approach for Optimal Product Values: An Application for Oil Blending Process

This paper presents a methodical approach for designing and optimizing process parameters in oil blending industries. Twenty seven replicated experiments were conducted for production of A-Z crown super oil (SAE20W/50) employing L9 orthogonal array to establish process response parameters. Power law model was fitted to experimental data and the obtained model was optimized applying the central composite design (CCD) of response surface methodology (RSM). Quadratic model was found to be significant for production of A-Z crown supper oil. The study recognized and specified four new lubricant formulations that conform to ISO oil standard in the course of analyzing the batch productions of A-Z crown supper oil as: L1: KV = 21.8293Cst, BS200 = 9430.00Litres, Ad102=11024.00Litres, PVI = 2520 Litres, L2: KV = 22.513Cst, BS200 = 12430.00 Litres, Ad102 = 11024.00 Litres, PVI = 2520 Litres, L3: KV = 22.1671Cst, BS200 = 9430.00 Litres, Ad102 = 10481.00 Litres, PVI= 2520 Litres, L4: KV = 22.8605Cst, BS200 = 12430.00 Litres, Ad102 = 10481.00 Litres, PVI = 2520 Litres. The analysis of variance showed that quadratic model is significant for kinematic viscosity production while the R-sq value statistic of 0.99936 showed that the variation of kinematic viscosity is due to its relationship with the control factors. This study therefore resulted to appropriate blending proportions of lubricants base oil and additives and recommends the optimal kinematic viscosity of A-Z crown super oil (SAE20W/50) to be 22.86Cst.

Parallel-Distributed Software Implementation of Buchberger Algorithm

Grobner basis calculation forms a key part of computational commutative algebra and many other areas. One important ramification of the theory of Grobner basis provides a means to solve a system of non-linear equations. This is why it has become very important in the areas where the solution of non-linear equations is needed, for instance in algebraic cryptanalysis and coding theory. This paper explores on a parallel-distributed implementation for Grobner basis calculation over GF(2). For doing so Buchberger algorithm is used. OpenMP and MPI-C language constructs have been used to implement the scheme. Some relevant results have been furnished to compare the performances between the standalone and hybrid (parallel-distributed) implementation.

The effect of Gamma Irradiation on the Nutritional Properties of Functional Products of the Green Banana

Banana is one of the most consumed fruits in the tropics and subtropics. Brazil accounts for about 9% of the world banana production. However, the production losses are as high as 30 to 40% and even much higher in some developing countries. The green banana flour is a complex carbohydrate source, including a high total starch (73.4%), resistant starch (17.5%) with functional properties. Gamma irradiation is considered to be an alternative method for food preservation. It has been performed due to the need of extending the shelf - life of foods, whilst maintaining their safety and avoiding one of the main concerns: the nutrient loss. In this work data about on the effects of ionizing radiation on the physicochemical analysis (carbohydrate, proteins, lipids, alimentary fiber, moistures and ashes) of Brazilian functional products (biscuits and bread) of the green banana pulp are presented. The caloric value was calculated. No significant difference was observed between the samples of irradiated and non – irradiated green banana biscuits with the following determinations: carbohydrates, proteins, alimentary fiber and ashes. Only a small significant difference was found in lipids (macronutrients). The results of physical chemical analysis of the irradiated and non- irradiated green banana bread non- irradiated showed no significant difference with the following determinations: carbohydrates, lipids (macronutrients), moisture, ashes and caloric value. A small difference was found in proteins (macronutrients). Irradiation of functional products (biscuits and bread) with doses of 1 and 3kGy maintained their original macronutrients content, showing good radioresistance.

A Review of Quality Relationship between IT Processes, IT Products and IT Services

Producing IT products/services required carefully designed. IT development process is intangible and labour intensive. Making optimal use of available resources, both soft (knowledge, skill-set etc.) and hard (computer system, ancillary equipment etc.), is vital if IT development is to achieve sensible economical advantages. Apart from the norm of Project Life Cycle and System Development Life Cycle (SDLC), there is an urgent need to establish a general yet widely acceptable guideline on the most effective and efficient way to precede an IT project in the broader view of Product Life Cycle. The current paper proposes such a framework with two major areas of concern: (1) an integration of IT Products and IT Services within an existing IT Process architecture and; (2) how IT Product and IT Services are built into the framework of Product Life Cycle, Project Life Cycle and SDLC.

Mathematical Approach towards Fault Detection and Isolation of Linear Dynamical Systems

The main objective of this work is to provide a fault detection and isolation based on Markov parameters for residual generation and a neural network for fault classification. The diagnostic approach is accomplished in two steps: In step 1, the system is identified using a series of input / output variables through an identification algorithm. In step 2, the fault is diagnosed comparing the Markov parameters of faulty and non faulty systems. The Artificial Neural Network is trained using predetermined faulty conditions serves to classify the unknown fault. In step 1, the identification is done by first formulating a Hankel matrix out of Input/ output variables and then decomposing the matrix via singular value decomposition technique. For identifying the system online sliding window approach is adopted wherein an open slit slides over a subset of 'n' input/output variables. The faults are introduced at arbitrary instances and the identification is carried out in online. Fault residues are extracted making a comparison of the first five Markov parameters of faulty and non faulty systems. The proposed diagnostic approach is illustrated on benchmark problems with encouraging results.

Force Statistics and Wake Structure Mechanism of Flow around a Square Cylinder at Low Reynolds Numbers

Numerical investigation of flow around a square cylinder are presented using the multi-relaxation-time lattice Boltzmann methods at different Reynolds numbers. A detail analysis are given in terms of time-trace analysis of drag and lift coefficients, power spectra analysis of lift coefficient, vorticity contours visualizations, streamlines and phase diagrams. A number of physical quantities mean drag coefficient, drag coefficient, Strouhal number and root-mean-square values of drag and lift coefficients are calculated and compared with the well resolved experimental data and numerical results available in open literature. The Reynolds numbers affected the physical quantities.

Collaborative Web-Based E-learning Environment for Information Security Curriculum

In recent years, the development of e-learning is very rapid. E-learning is an attractive and efficient way for computer education. Student interaction and collaboration also plays an important role in e-learning. In this paper, a collaborative web-based e-learning environment is presented. A wide range of interactive and collaborative methods are integrated into a web-based environment. This e-learning environment is designed for information security curriculum.

A Performance Appraisal of Neural Networks Developed for Response Prediction across Heterogeneous Domains

Deciding the numerous parameters involved in designing a competent artificial neural network is a complicated task. The existence of several options for selecting an appropriate architecture for neural network adds to this complexity, especially when different applications of heterogeneous natures are concerned. Two completely different applications in engineering and medical science were selected in the present study including prediction of workpiece's surface roughness in ultrasonic-vibration assisted turning and papilloma viruses oncogenicity. Several neural network architectures with different parameters were developed for each application and the results were compared. It was illustrated in this paper that some applications such as the first one mentioned above are apt to be modeled by a single network with sufficient accuracy, whereas others such as the second application can be best modeled by different expert networks for different ranges of output. Development of knowledge about the essentials of neural networks for different applications is regarded as the cornerstone of multidisciplinary network design programs to be developed as a means of reducing inconsistencies and the burden of the user intervention.

Natural and Mixed Convection Heat Transfer Cooling of Discrete Heat Sources Placed Near the Bottom on a PCB

Steady state experiments have been conducted for natural and mixed convection heat transfer, from five different sized protruding discrete heat sources, placed at the bottom position on a PCB and mounted on a vertical channel. The characteristic length ( Lh ) of heat sources vary from 0.005 to 0.011 m. The study has been done for different range of Reynolds number and modified Grashof number. From the experiment, the surface temperature distribution and the Nusselt number of discrete heat sources have been obtained and the effects of Reynold number and Richardson number on them have been discussed. The objective is to find the rate of heat dissipation from heat sources, by placing them at the bottom position on a PCB and to compare both modes of cooling of heat sources.

Study of Reactive Wetting of Sn–0.7Cu and Sn–0.3Ag–0.7Cu Lead Free Solders during Solidification on Nickel Coated Al Substrates

Microstructure, wetting behavior and interfacial reactions between Sn–0.7Cu and Sn–0.3Ag–0.7Cu (SAC0307) solders solidified on Ni coated Al substrates were compared and investigated. Microstructure of Sn–0.7Cu alloy exhibited a eutectic matrix composed of primary β-Sn dendrites with a fine dispersion of Cu6Sn5 intermetallics whereas microstructure of SAC0307 alloy exhibited coarser Cu6Sn5 and finer Ag3Sn precipitates of IMCs with decreased tin dendrites. Contact angles ranging from 22° to 26° were obtained for Sn–0.7Cu solder solidified on substrate surface whereas for SAC0307 solder alloy contact angles were found to be in the range of 20° to 22°. Sn–0.7Cu solder/substrate interfacial region exhibited faceted (Cu, Ni)6Sn5 IMCs protruding into the solder matrix and a small amount of (Cu, Ni)3Sn4 intermetallics at the interface. SAC0307 solder/substrate interfacial region showed mainly (Cu, Ni)3Sn4 intermetallics adjacent to the coating layer and (Cu, Ni)6Sn5 IMCs in the solder matrix. The improvement in the wettability of SAC0307 solder alloy on substrate surface is attributed to the formation of cylindrical shape (Cu,Ni)6Sn5 and a layer of (Cu, Ni)3Sn4 IMCs at the interface.

Two Different Solutions for Gigabit Ethernet Transmission over POF

Two completely different approaches for a Gigabit Ethernet compliant stream transmission over 50m of 1mm PMMA SI-POF have been experimentally demonstrated and are compared in this paper. The first solution is based on a commercial RC-LED transmission and a careful optimization of the physical layer architecture, realized during the POF-PLUS EU Project. The second solution exploits the performance of an edge-emitting laser at the transmitter side in order to avoid any sort of electrical equalization at the receiver side.

Performance Evaluation of 2×2 Switched Beam Antennas with Null Locating for Wireless Mesh Networks

A concept of switched beam antennas consisting of 2×2 rectangular array spaced by λ/4 accompanied with a null locating has been proposed in the previous work. In this letter, the performance evaluations of its prototype are presented. The benefits of using proposed system have been clearly measured in term of signal quality, throughput and delays. Also, the impact of position shift which mesh router is not located on the expected beam direction has also been investigated.

An Ontology Based Question Answering System on Software Test Document Domain

Processing the data by computers and performing reasoning tasks is an important aim in Computer Science. Semantic Web is one step towards it. The use of ontologies to enhance the information by semantically is the current trend. Huge amount of domain specific, unstructured on-line data needs to be expressed in machine understandable and semantically searchable format. Currently users are often forced to search manually in the results returned by the keyword-based search services. They also want to use their native languages to express what they search. In this paper, an ontology-based automated question answering system on software test documents domain is presented. The system allows users to enter a question about the domain by means of natural language and returns exact answer of the questions. Conversion of the natural language question into the ontology based query is the challenging part of the system. To be able to achieve this, a new algorithm regarding free text to ontology based search engine query conversion is proposed. The algorithm is based on investigation of suitable question type and parsing the words of the question sentence.

Identifications and Monitoring of Power System Dynamics Based on the PMUs and Wavelet Technique

Low frequency power oscillations may be triggered by many events in the system. Most oscillations are damped by the system, but undamped oscillations can lead to system collapse. Oscillations develop as a result of rotor acceleration/deceleration following a change in active power transfer from a generator. Like the operations limits, the monitoring of power system oscillating modes is a relevant aspect of power system operation and control. Unprevented low-frequency power swings can be cause of cascading outages that can rapidly extend effect on wide region. On this regard, a Wide Area Monitoring, Protection and Control Systems (WAMPCS) help in detecting such phenomena and assess power system dynamics security. The monitoring of power system electromechanical oscillations is very important in the frame of modern power system management and control. In first part, this paper compares the different technique for identification of power system oscillations. Second part analyzes possible identification some power system dynamics behaviors Using Wide Area Monitoring Systems (WAMS) based on Phasor Measurement Units (PMUs) and wavelet technique.

Application of Formyl-TIPPCu (II) for Temperature and Light Sensing

Effect of temperature and light was investigated on a thin film of organic semiconductor formyl-TIPPCu(II) deposited on a glass substrate with preliminary evaporated gold electrodes. The electrical capacitance and resistance of the fabricated device were evaluated under the effect of temperature and light. The relative capacitance of the fabricated sensor increased by 4.3 times by rising temperature from 27 to 1870C, while under illumination up to 25000 lx, the capacitance of the Au/formyl-TIPPCu(II)/Au photo capacitive sensor increased continuously by 13.2 times as compared to dark conditions.

A Novel Optimized JTAG Interface Circuit Design

This paper describes a novel optimized JTAG interface circuit between a JTAG controller and target IC. Being able to access JTAG using only one or two pins, this circuit does not change the original boundary scanning test frequency of target IC. Compared with the traditional JTAG interface which based on IEEE std. 1149.1, this reduced pin technology is more applicability in pin limited devices, and it is easier to control the scale of target IC for the designer.

UTHM Hand: Mechanics Behind The Dexterous Anthropomorphic Hand

A multi fingered dexterous anthropomorphic hand is being developed by the authors. The focus of the hand is the replacement of human operators in hazardous environments and also in environments where zero tolerance is observed for the human errors. The robotic hand will comprise of five fingers (four fingers and one thumb) each having four degrees of freedom (DOF) which can perform flexion, extension, abduction, adduction and also circumduction. For the actuation purpose pneumatic muscles and springs will be used. The paper exemplifies the mechanical design for the robotic hand. It also describes different mechanical designs that have been developed before date.

Efficient Boosting-Based Active Learning for Specific Object Detection Problems

In this work, we present a novel active learning approach for learning a visual object detection system. Our system is composed of an active learning mechanism as wrapper around a sub-algorithm which implement an online boosting-based learning object detector. In the core is a combination of a bootstrap procedure and a semi automatic learning process based on the online boosting procedure. The idea is to exploit the availability of classifier during learning to automatically label training samples and increasingly improves the classifier. This addresses the issue of reducing labeling effort meanwhile obtain better performance. In addition, we propose a verification process for further improvement of the classifier. The idea is to allow re-update on seen data during learning for stabilizing the detector. The main contribution of this empirical study is a demonstration that active learning based on an online boosting approach trained in this manner can achieve results comparable or even outperform a framework trained in conventional manner using much more labeling effort. Empirical experiments on challenging data set for specific object deteciton problems show the effectiveness of our approach.

Video Super-Resolution Using Classification ANN

In this study, a classification-based video super-resolution method using artificial neural network (ANN) is proposed to enhance low-resolution (LR) to high-resolution (HR) frames. The proposed method consists of four main steps: classification, motion-trace volume collection, temporal adjustment, and ANN prediction. A classifier is designed based on the edge properties of a pixel in the LR frame to identify the spatial information. To exploit the spatio-temporal information, a motion-trace volume is collected using motion estimation, which can eliminate unfathomable object motion in the LR frames. In addition, temporal lateral process is employed for volume adjustment to reduce unnecessary temporal features. Finally, ANN is applied to each class to learn the complicated spatio-temporal relationship between LR and HR frames. Simulation results show that the proposed method successfully improves both peak signal-to-noise ratio and perceptual quality.