Hydrothermal Alteration Zones Identification Based on Remote Sensing Data in the Mahin Area, West of Qazvin Province, Iran

The Mahin area is a part of Tarom- Hashtjin zone that located in west of Qazvin province in northwest of Iran. Many copper and base metals ore deposits are hosted by this zone. High potential localities identification in this area is very necessary. The objective of this research, is finding hydrothermal alteration zones by remote sensing methods and best processing technique of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data. Different methods such as band ratio, Principal Component Analysis (PCA), Minimum Noise Fraction (MNF) and Least Square Fit (LS-Fit) were used for mapping hydrothermal alteration zones.

A Mahalanobis Distance-based Diversification and Nelder-Mead Simplex Intensification Search Scheme for Continuous Ant Colony Optimization

Ant colony optimization (ACO) and its variants are applied extensively to resolve various continuous optimization problems. As per the various diversification and intensification schemes of ACO for continuous function optimization, researchers generally consider components of multidimensional state space to generate the new search point(s). However, diversifying to a new search space by updating only components of the multidimensional vector may not ensure that the new point is at a significant distance from the current solution. If a minimum distance is not ensured during diversification, then there is always a possibility that the search will end up with reaching only local optimum. Therefore, to overcome such situations, a Mahalanobis distance-based diversification with Nelder-Mead simplex-based search scheme for each ant is proposed for the ACO strategy. A comparative computational run results, based on nine nonlinear standard test problems, confirms that the performance of ACO is improved significantly with the integration of the proposed schemes in the ACO.

Photodegradation of Phenol Red in the Presence of ZnO Nanoparticles

In our recent study, we have used ZnO nanoparticles assisted with UV light irradiation to investigate the photocatalytic degradation of Phenol Red (PR). The ZnO photocatalyst was characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), specific surface area analysis (BET) and UVvisible spectroscopy. X-ray diffractometry result for the ZnO nanoparticles exhibit normal crystalline phase features. All observed peaks can be indexed to the pure hexagonal wurtzite crystal structures, with the space group of P63mc. There are no other impurities in the diffraction peak. In addition, TEM measurement shows that most of the nanoparticles are rod-like and spherical in shape and fairly monodispersed. A significant degradation of the PR was observed when the catalyst was added into the solution even without the UV light exposure. In addition, the photodegradation increases with the photocatalyst loading. The surface area of the ZnO nanomaterials from the BET measurement was 11.9 m2/g. Besides the photocatalyst loading, the effect of some parameters on the photodegradation efficiency such as initial PR concentration and pH were also studied.

A Study of Color Transformation on Website Images for the Color Blind

In this paper, we study on color transformation method on website images for the color blind. The most common category of color blindness is red-green color blindness which is viewed as beige color. By transforming the colors of the images, the color blind can improve their color visibility. They can have a better view when browsing through the websites. To transform colors on the website images, we study on two algorithms which are the conversion techniques from RGB color space to HSV color space and self-organizing color transformation. The comparative study focuses on criteria based on the ease of use, quality, accuracy and efficiency. The outcome of the study leads to enhancement of website images to meet the color blinds- vision requirements in perceiving image detailed.

Word Stemming Algorithms and Retrieval Effectiveness in Malay and Arabic Documents Retrieval Systems

Documents retrieval in Information Retrieval Systems (IRS) is generally about understanding of information in the documents concern. The more the system able to understand the contents of documents the more effective will be the retrieval outcomes. But understanding of the contents is a very complex task. Conventional IRS apply algorithms that can only approximate the meaning of document contents through keywords approach using vector space model. Keywords may be unstemmed or stemmed. When keywords are stemmed and conflated in retrieving process, we are a step forwards in applying semantic technology in IRS. Word stemming is a process in morphological analysis under natural language processing, before syntactic and semantic analysis. We have developed algorithms for Malay and Arabic and incorporated stemming in our experimental systems in order to measure retrieval effectiveness. The results have shown that the retrieval effectiveness has increased when stemming is used in the systems.

Hutchinson-Barnsley Operator in Fuzzy Metric Spaces

The purpose of this paper is to present the fuzzy contraction properties of the Hutchinson-Barnsley operator on the fuzzy hyperspace with respect to the Hausdorff fuzzy metrics. Also we discuss about the relationships between the Hausdorff fuzzy metrics on the fuzzy hyperspaces. Our theorems generalize and extend some recent results related with Hutchinson-Barnsley operator in the metric spaces.

Time Series Forecasting Using Independent Component Analysis

The paper presents a method for multivariate time series forecasting using Independent Component Analysis (ICA), as a preprocessing tool. The idea of this approach is to do the forecasting in the space of independent components (sources), and then to transform back the results to the original time series space. The forecasting can be done separately and with a different method for each component, depending on its time structure. The paper gives also a review of the main algorithms for independent component analysis in the case of instantaneous mixture models, using second and high-order statistics. The method has been applied in simulation to an artificial multivariate time series with five components, generated from three sources and a mixing matrix, randomly generated.

MIMO-OFDM Coded for Digital Terrestrial Television Broadcasting Systems

This paper proposes and analyses the wireless telecommunication system with multiple antennas to the emission and reception MIMO (multiple input multiple output) with space diversity in a OFDM context. In particular it analyses the performance of a DTT (Digital Terrestrial Television) broadcasting system that includes MIMO-OFDM techniques. Different propagation channel models and configurations are considered for each diversity scheme. This study has been carried out in the context of development of the next generation DVB-T/H and WRAN.

A new Adaptive Approach for Histogram based Mouth Segmentation

The segmentation of mouth and lips is a fundamental problem in facial image analyisis. In this paper we propose a method for lip segmentation based on rg-color histogram. Statistical analysis shows, using the rg-color-space is optimal for this purpose of a pure color based segmentation. Initially a rough adaptive threshold selects a histogram region, that assures that all pixels in that region are skin pixels. Based on that pixels we build a gaussian model which represents the skin pixels distribution and is utilized to obtain a refined, optimal threshold. We are not incorporating shape or edge information. In experiments we show the performance of our lip pixel segmentation method compared to the ground truth of our dataset and a conventional watershed algorithm.

Concentrated Solar Power Utilization in Space Vehicles Propulsion and Power Generation

The objective from this paper is to design a solar thermal engine for space vehicles orbital control and electricity generation. A computational model is developed for the prediction of the solar thermal engine performance for different design parameters and conditions in order to enhance the engine efficiency. The engine is divided into two main subsystems. First, the concentrator dish which receives solar energy from the sun and reflects them to the cavity receiver. The second one is the cavity receiver which receives the heat flux reflected from the concentrator and transfers heat to the fluid passing over. Other subsystems depend on the application required from the engine. For thrust application, a nozzle is introduced to the system for the fluid to expand and produce thrust. Hydrogen is preferred as a working fluid in the thruster application. Results model developed is used to determine the thrust for a concentrator dish 4 meters in diameter (provides 10 kW of energy), focusing solar energy to a 10 cm aperture diameter cavity receiver. The cavity receiver outer length is 50 cm and the internal cavity is 47 cm in length. The suggested design material of the internal cavity is tungsten to withstand high temperature. The thermal model and analysis shows that the hydrogen temperature at the plenum reaches 2000oK after about 250 seconds for hot start operation for a flow rate of 0.1 g/sec.Using solar thermal engine as an electricity generation device on earth is also discussed. In this case a compressor and turbine are used to convert the heat gained by the working fluid (air) into mechanical power. This mechanical power can be converted into electrical power by using a generator.

Branding Urban Spaces as an Approach for City Branding -Case study: Cairo City, Egypt

With the beginning of the new century, man still faces many challenges in how to form and develop his urban environment. To meet these challenges, many cities have tried to develop its visual image. This is by transforming their urban environment into a branded visual image; this is at the level of squares, the main roads, the borders, and the landmarks. In this realm, the paper aims at activating the role of branded urban spaces as an approach for the development of visual image of cities, especially in Egypt. It concludes the need to recognize the importance of developing the visual image in Egypt, through directing the urban planners to the important role of such spaces in achieving sustainability.

A Novel In-Place Sorting Algorithm with O(n log z) Comparisons and O(n log z) Moves

In-place sorting algorithms play an important role in many fields such as very large database systems, data warehouses, data mining, etc. Such algorithms maximize the size of data that can be processed in main memory without input/output operations. In this paper, a novel in-place sorting algorithm is presented. The algorithm comprises two phases; rearranging the input unsorted array in place, resulting segments that are ordered relative to each other but whose elements are yet to be sorted. The first phase requires linear time, while, in the second phase, elements of each segment are sorted inplace in the order of z log (z), where z is the size of the segment, and O(1) auxiliary storage. The algorithm performs, in the worst case, for an array of size n, an O(n log z) element comparisons and O(n log z) element moves. Further, no auxiliary arithmetic operations with indices are required. Besides these theoretical achievements of this algorithm, it is of practical interest, because of its simplicity. Experimental results also show that it outperforms other in-place sorting algorithms. Finally, the analysis of time and space complexity, and required number of moves are presented, along with the auxiliary storage requirements of the proposed algorithm.

The Hardware Implementation of a Novel Genetic Algorithm

This paper presents a novel genetic algorithm, termed the Optimum Individual Monogenetic Algorithm (OIMGA) and describes its hardware implementation. As the monogenetic strategy retains only the optimum individual, the memory requirement is dramatically reduced and no crossover circuitry is needed, thereby ensuring the requisite silicon area is kept to a minimum. Consequently, depending on application requirements, OIMGA allows the investigation of solutions that warrant either larger GA populations or individuals of greater length. The results given in this paper demonstrate that both the performance of OIMGA and its convergence time are superior to those of existing hardware GA implementations. Local convergence is achieved in OIMGA by retaining elite individuals, while population diversity is ensured by continually searching for the best individuals in fresh regions of the search space.

Using Reuse Water for Irrigation Green space of Naein City

Since water resources of desert Naein City are very limited, a approach which saves water resources and meanwhile meets the needs of the greenspace for water is to use city-s sewage wastewater. Proper treatment of Naein-s sewage up to the standards required for green space uses may solve some of the problems of green space development of the city. The present paper closely examines available statistics and information associated with city-s sewage system, and determines complementary stages of sewage treatment facilities of the city. In the present paper, population, per capita water use, and required discharge for various greenspace pieces including different plants are calculated. Moreover, in order to facilitate the application of water resources, a Crude water distribution network apart from drinking water distribution network is designed, and a plan for mixing municipal wells- water with sewage wastewater in proposed mixing tanks is suggested. Hence, following greenspace irrigation reform and complementary plan, per capita greenspace of the city will be increased from current amount of 13.2 square meters to 32 square meters.

Integrating Fast Karnough Map and Modular Neural Networks for Simplification and Realization of Complex Boolean Functions

In this paper a new fast simplification method is presented. Such method realizes Karnough map with large number of variables. In order to accelerate the operation of the proposed method, a new approach for fast detection of group of ones is presented. Such approach implemented in the frequency domain. The search operation relies on performing cross correlation in the frequency domain rather than time one. It is proved mathematically and practically that the number of computation steps required for the presented method is less than that needed by conventional cross correlation. Simulation results using MATLAB confirm the theoretical computations. Furthermore, a powerful solution for realization of complex functions is given. The simplified functions are implemented by using a new desigen for neural networks. Neural networks are used because they are fault tolerance and as a result they can recognize signals even with noise or distortion. This is very useful for logic functions used in data and computer communications. Moreover, the implemented functions are realized with minimum amount of components. This is done by using modular neural nets (MNNs) that divide the input space into several homogenous regions. Such approach is applied to implement XOR function, 16 logic functions on one bit level, and 2-bit digital multiplier. Compared to previous non- modular designs, a clear reduction in the order of computations and hardware requirements is achieved.

Demythologization of Female Smokers in Korean Films

Compare to western cultures, women who smoke in Korea are not tolerated. Korean people are prejudiced against women smoking. In spite of the relative prevalence of sexual equality in South Korea, women too often feel obliged to confine their smoking to only a few public spaces, such as designated smoking rooms, coffee shops or pubs. Korean Confucianism classifies people according to gender and social status. According to Confucian culture, cigarettes convey clear social meanings as well as reinforcing status, age and gender, beyond personal preferences. For these reasons, the significant of people smoking in Korea varies according to their gender. This study will determine reasons for the ongoing sexual discrimination against female Korean smokers thorough analyzing Korean films. Since film is a medium reflects social phenomenon. Roland Barthes- Mythology Theory will be used to analyze films.

Authentication Analysis of the 802.11i Protocol

IEEE has designed 802.11i protocol to address the security issues in wireless local area networks. Formal analysis is important to ensure that the protocols work properly without having to resort to tedious testing and debugging which can only show the presence of errors, never their absence. In this paper, we present the formal verification of an abstract protocol model of 802.11i. We translate the 802.11i protocol into the Strand Space Model and then prove the authentication property of the resulting model using the Strand Space formalism. The intruder in our model is imbued with powerful capabilities and repercussions to possible attacks are evaluated. Our analysis proves that the authentication of 802.11i is not compromised in the presented model. We further demonstrate how changes in our model will yield a successful man-in-the-middle attack.

Physico-chemical State of the Air at the Stagnation Point during the Atmospheric Reentry of a Spacecraft

Hypersonic flows around spatial vehicles during their reentry phase in planetary atmospheres are characterized by intense aerothermal phenomena. The aim of this work is to analyze high temperature flows around an axisymmetric blunt body taking into account chemical and vibrational non-equilibrium for air mixture species. For this purpose, a finite volume methodology is employed to determine the supersonic flow parameters around the axisymmetric blunt body, especially at the stagnation point and along the wall of spacecraft for several altitudes. This allows the capture shock wave before a blunt body placed in supersonic free stream. The numerical technique uses the Flux Vector Splitting method of Van Leer. Here, adequate time stepping parameter, along with CFL coefficient and mesh size level are selected to ensure numerical convergence, sought with an order of 10-8

A New Splitting H1-Galerkin Mixed Method for Pseudo-hyperbolic Equations

A new numerical scheme based on the H1-Galerkin mixed finite element method for a class of second-order pseudohyperbolic equations is constructed. The proposed procedures can be split into three independent differential sub-schemes and does not need to solve a coupled system of equations. Optimal error estimates are derived for both semidiscrete and fully discrete schemes for problems in one space dimension. And the proposed method dose not requires the LBB consistency condition. Finally, some numerical results are provided to illustrate the efficacy of our method.