Momentum Accounting in Public Management: A Case Study in a Brazilian Navy-s Services Provider Military Organization

This study examines the possibility to apply the theory of multidimensional accounting (momentum accounting) in a Brazilian Navy-s Services Provider Military Organization (Organização Militar Prestadora de Serviços - OMPS). In general, the core of the said theory is the fact that Accounting does not recognize the inertia of transactions occurring in an entity, and that occur repeatedly in some cases, regardless of the implementation of new actions by its managers. The study evaluates the possibility of greater use of information recorded in the financial statements of the unit of analysis, within the strategic decisions of the organization. As a research strategy, we adopted the case study. The results infer that it is possible to use the theory in the context of a multidimensional OMPS, promoting useful information for decision-making and thereby contributing to the strengthening of the necessary alignment of its administration with the current desires of the Brazilian society.

An Improved Optimal Sliding Mode Control for Structural Stability

In this paper, the modified optimal sliding mode control with a proposed method to design a sliding surface is presented. Because of the inability of the previous approach of the sliding mode method to design a bounded and suitable input, the new variation is proposed in the sliding manifold to obviate problems in a structural system. Although the sliding mode control is a powerful method to reject disturbances and noises, the chattering problem is not good for actuators. To decrease the chattering phenomena, the optimal control is added to the sliding mode control. Not only the proposed method can decline the intense variations in the inputs of the system but also it can produce the efficient responses respect to the sliding mode control and optimal control that are shown by performing some numerical simulations.

Explorations in the Role of Emotion in Moral Judgment

Recent theorizations on the cognitive process of moral judgment have focused on the role of intuitions and emotions, marking a departure from previous emphasis on conscious, step-by-step reasoning. My study investigated how being in a disgusted mood state affects moral judgment. Participants were induced to enter a disgusted mood state through listening to disgusting sounds and reading disgusting descriptions. Results shows that they, when compared to control who have not been induced to feel disgust, are more likely to endorse actions that are emotionally aversive but maximizes utilitarian return The result is analyzed using the 'emotion-as-information' approach to decision making. The result is consistent with the view that emotions play an important role in determining moral judgment.

Wood Species Recognition System

The proposed system identifies the species of the wood using the textural features present in its barks. Each species of a wood has its own unique patterns in its bark, which enabled the proposed system to identify it accurately. Automatic wood recognition system has not yet been well established mainly due to lack of research in this area and the difficulty in obtaining the wood database. In our work, a wood recognition system has been designed based on pre-processing techniques, feature extraction and by correlating the features of those wood species for their classification. Texture classification is a problem that has been studied and tested using different methods due to its valuable usage in various pattern recognition problems, such as wood recognition, rock classification. The most popular technique used for the textural classification is Gray-level Co-occurrence Matrices (GLCM). The features from the enhanced images are thus extracted using the GLCM is correlated, which determines the classification between the various wood species. The result thus obtained shows a high rate of recognition accuracy proving that the techniques used in suitable to be implemented for commercial purposes.

Detecting Interactions between Behavioral Requirements with OWL and SWRL

High quality requirements analysis is one of the most crucial activities to ensure the success of a software project, so that requirements verification for software system becomes more and more important in Requirements Engineering (RE) and it is one of the most helpful strategies for improving the quality of software system. Related works show that requirement elicitation and analysis can be facilitated by ontological approaches and semantic web technologies. In this paper, we proposed a hybrid method which aims to verify requirements with structural and formal semantics to detect interactions. The proposed method is twofold: one is for modeling requirements with the semantic web language OWL, to construct a semantic context; the other is a set of interaction detection rules which are derived from scenario-based analysis and represented with semantic web rule language (SWRL). SWRL based rules are working with rule engines like Jess to reason in semantic context for requirements thus to detect interactions. The benefits of the proposed method lie in three aspects: the method (i) provides systematic steps for modeling requirements with an ontological approach, (ii) offers synergy of requirements elicitation and domain engineering for knowledge sharing, and (3)the proposed rules can systematically assist in requirements interaction detection.

Dynamic Instability in High-Rise SMRFs Subjected to Long-Period Ground Motions

We study dynamic instability in high-rise steel moment resisting frames (SMRFs) subjected to synthetic long-period ground motions caused by hypothetical huge subduction earthquakes. Since long duration as well as long dominant periods is a characteristic of long-period ground motions, interstory drifts may enter the negative postyield stiffness range many times when high-rise buildings are subjected to long-period ground motions. Through the case studies of 9 high-rise SMRFs designed in accordance with the Japanese design practice in 1980s, we demonstrate that drifting, or accumulation of interstory drifts in one direction, occurs at the lower stories of the SMRFs, if their natural periods are close to the dominant periods of the long-period ground motions. The drifting led to residual interstory drift ratio over 0.01, or to collapse if the design base shear was small.

Effect of Wheat Flour Extraction Rates on Flour Composition, Farinographic Characteristics and Sensory Perception of Sourdough Naans

The effect of wheat flour extraction rates on flour composition, farinographic characteristics and the quality of sourdough naans was investigated. The results indicated that by increasing the extraction rate, the amount of protein, fiber, fat and ash increased, whereas moisture content decreased. Farinographic characteristic like water absorption and dough development time increased with an increase in flour extraction rate but the dough stabilities and tolerance indices were reduced with an increase in flour extraction rates. Titratable acidity for both sourdough and sourdough naans also increased along with flour extraction rate. The study showed that overall quality of sourdough naans were affected by both flour extraction rate and starter culture used. Sensory analysis of sourdough naans revealed that desirable extraction rate for sourdough naan was 76%.

Groundwater Management–A Policy Perspective

Groundwater has become the most dependable source of fresh water for agriculture, domestic and industrial uses in the past few decades. This wide use of groundwater if left uncontrolled and unseen will lead to overexploitation causing sea water intrusion in the coastal areas and illegal water marketing. Several Policies and Acts have been enacted to regulate and manage the use of this valuable resource. In spite of this the over extraction of groundwater beyond the recharging capacity of aquifers and depletion in the quality of groundwater is continuing. The current study aims at reviewing the Acts and Policies existing in the State of Tamil Nadu and in the National level regarding groundwater regulation and management. Further an analysis is made on the rights associated with the usage of groundwater resources and the gaps in these policies have been analyzed. Some suggestions are made to reform the existing groundwater policies for better management and regulation of the resource.

A Virtual Learning Environment for Deaf Children: Design and Evaluation

The object of this research is the design and evaluation of an immersive Virtual Learning Environment (VLE) for deaf children. Recently we have developed a prototype immersive VR game to teach sign language mathematics to deaf students age K- 4 [1] [2]. In this paper we describe a significant extension of the prototype application. The extension includes: (1) user-centered design and implementation of two additional interactive environments (a clock store and a bakery), and (2) user-centered evaluation including development of user tasks, expert panel-based evaluation, and formative evaluation. This paper is one of the few to focus on the importance of user-centered, iterative design in VR application development, and to describe a structured evaluation method.

Towards Finite Element Modeling of the Accoustics of Human Head

In this paper, a new formulation for acoustics coupled with linear elasticity is presented. The primary objective of the work is to develop a three dimensional hp adaptive finite element method code destinated for modeling of acoustics of human head. The code will have numerous applications e.g. in designing hearing protection devices for individuals working in high noise environments. The presented work is in the preliminary stage. The variational formulation has been implemented and tested on a sequence of meshes with concentric multi-layer spheres, with material data representing the tissue (the brain), skull and the air. Thus, an efficient solver for coupled elasticity/acoustics problems has been developed, and tested on high contrast material data representing the human head.

MaxMin Share Based Medium Access for Attaining Fairness and Channel Utilization in Mobile Adhoc Networks

Due to the complex network architecture, the mobile adhoc network-s multihop feature gives additional problems to the users. When the traffic load at each node gets increased, the additional contention due its traffic pattern might cause the nodes which are close to destination to starve the nodes more away from the destination and also the capacity of network is unable to satisfy the total user-s demand which results in an unfairness problem. In this paper, we propose to create an algorithm to compute the optimal MAC-layer bandwidth assigned to each flow in the network. The bottleneck links contention area determines the fair time share which is necessary to calculate the maximum allowed transmission rate used by each flow. To completely utilize the network resources, we compute two optimal rates namely, the maximum fair share and minimum fair share. We use the maximum fair share achieved in order to limit the input rate of those flows which crosses the bottleneck links contention area when the flows that are not allocated to the optimal transmission rate and calculate the following highest fair share. Through simulation results, we show that the proposed protocol achieves improved fair share and throughput with reduced delay.

Distribution Centers Reliability Cost in Capacitated Facility Location Problem

Recently studies in area of supply chain network (SCN) have focused on the disruption issues in distribution systems. Also this paper extends the previous literature by providing a new biobjective model for cost minimization of designing a three echelon SCN across normal and failure scenarios with considering multi capacity option for manufacturers and distribution centers. Moreover, in order to solve the problem by means of LINGO software, novel model will be reformulated through a branch of LP-Metric method called Min-Max approach.

Array Data Transformation for Source Code Obfuscation

Obfuscation is a low cost software protection methodology to avoid reverse engineering and re engineering of applications. Source code obfuscation aims in obscuring the source code to hide the functionality of the codes. This paper proposes an Array data transformation in order to obfuscate the source code which uses arrays. The applications using the proposed data structures force the programmer to obscure the logic manually. It makes the developed obscured codes hard to reverse engineer and also protects the functionality of the codes.

An Optimal Feature Subset Selection for Leaf Analysis

This paper describes an optimal approach for feature subset selection to classify the leaves based on Genetic Algorithm (GA) and Kernel Based Principle Component Analysis (KPCA). Due to high complexity in the selection of the optimal features, the classification has become a critical task to analyse the leaf image data. Initially the shape, texture and colour features are extracted from the leaf images. These extracted features are optimized through the separate functioning of GA and KPCA. This approach performs an intersection operation over the subsets obtained from the optimization process. Finally, the most common matching subset is forwarded to train the Support Vector Machine (SVM). Our experimental results successfully prove that the application of GA and KPCA for feature subset selection using SVM as a classifier is computationally effective and improves the accuracy of the classifier.

Techno-Economics Study to Select Optimum Desalination Plant for Asalouyeh Combined Cycle Power Plant in Iran

This research deals with techno economic analysis to select the most economic desalination method for Asalouyeh combined cycle power plant . Due to lack of fresh water, desalination of sea water is necessary to provide required DM water of Power Plant. The most common desalination methods are RO, MSF, MED, and MED–TVC. In this research, methods of RO, MED, and MED– TVC have been compared. Simulation results show that recovery of heat of exhaust gas of main stack is optimum case for providing DM water required for injected steam of MED desalination. This subject is very important because of improving thermal efficiency of power plant using extra heat recovery. Also, it has been shown that by adding 3 rows of finned tube to de-aerator evaporator, which is very simple and low cost, required steam for generating 5200 m3/day of desalinated water is obtainable.

Exact Pfaffian and N-Soliton Solutions to a (3+1)-Dimensional Generalized Integrable Nonlinear Partial Differential Equations

The objective of this paper is to use the Pfaffian technique to construct different classes of exact Pfaffian solutions and N-soliton solutions to some of the generalized integrable nonlinear partial differential equations in (3+1) dimensions. In this paper, I will show that the Pfaffian solutions to the nonlinear PDEs are nothing but Pfaffian identities. Solitons are among the most beneficial solutions for science and technology, from ocean waves to transmission of information through optical fibers or energy transport along protein molecules. The existence of multi-solitons, especially three-soliton solutions, is essential for information technology: it makes possible undisturbed simultaneous propagation of many pulses in both directions.

A Modified Cross Correlation in the Frequency Domain for Fast Pattern Detection Using Neural Networks

Recently, neural networks have shown good results for detection of a certain pattern in a given image. In our previous papers [1-5], a fast algorithm for pattern detection using neural networks was presented. Such algorithm was designed based on cross correlation in the frequency domain between the input image and the weights of neural networks. Image conversion into symmetric shape was established so that fast neural networks can give the same results as conventional neural networks. Another configuration of symmetry was suggested in [3,4] to improve the speed up ratio. In this paper, our previous algorithm for fast neural networks is developed. The frequency domain cross correlation is modified in order to compensate for the symmetric condition which is required by the input image. Two new ideas are introduced to modify the cross correlation algorithm. Both methods accelerate the speed of the fast neural networks as there is no need for converting the input image into symmetric one as previous. Theoretical and practical results show that both approaches provide faster speed up ratio than the previous algorithm.

A Fault Tolerant Token-based Algorithm for Group Mutual Exclusion in Distributed Systems

The group mutual exclusion (GME) problem is a variant of the mutual exclusion problem. In the present paper a token-based group mutual exclusion algorithm, capable of handling transient faults, is proposed. The algorithm uses the concept of dynamic request sets. A time out mechanism is used to detect the token loss; also, a distributed scheme is used to regenerate the token. The worst case message complexity of the algorithm is n+1. The maximum concurrency and forum switch complexity of the algorithm are n and min (n, m) respectively, where n is the number of processes and m is the number of groups. The algorithm also satisfies another desirable property called smooth admission. The scheme can also be adapted to handle the extended group mutual exclusion problem.

Practical Guidelines and Examples for the Users of the TMS320C6713 DSK

This paper describes how the correct endian mode of the TMS320C6713 DSK board can be identified. It also explains how the TMS320C6713 DSK board can be used in the little endian and in the big endian modes for assembly language programming in particular and for signal processing in general. Similarly, it discusses how crucially important it is for a user of the TMS320C6713 DSK board to identify the mode of operation and then use it correctly during the development stages of the assembly language programming; otherwise, it will cause unnecessary confusion and erroneous results as far as storing data into the memory and loading data from the memory is concerned. Furthermore, it highlights and strongly recommends to the users of the TMS320C6713 DSK board to be aware of the availability and importance of various display options in the Code Composer Studio (CCS) for correctly interpreting and displaying the desired data in the memory. The information presented in this paper will be of great importance and interest to those practitioners and developers who wants to use the TMS320C6713 DSK board for assembly language programming as well as input-output signal processing manipulations. Finally, examples that clearly illustrate the concept are presented.

A Matlab / Simulink Based Tool for Power Electronic Circuits

Transient simulation of power electronic circuits is of considerable interest to the designer. The switching nature of the devices used permits development of specialized algorithms which allow a considerable reduction in simulation time compared to general purpose simulation algorithms. This paper describes a method used to simulate a power electronic circuits using the SIMULINK toolbox within MATLAB software. Theoretical results are presented provides the basis of transient analysis of a power electronic circuits.