A Pattern Language for Software Debugging

In spite of all advancement in software testing, debugging remains a labor-intensive, manual, time consuming, and error prone process. A candidate solution to enhance debugging process is to fuse it with testing process. To achieve this integration, a possible solution may be categorizing common software tests and errors followed by the effort on fixing the errors through general solutions for each test/error pair. Our approach to address this issue is based on Christopher Alexander-s pattern and pattern language concepts. The patterns in this language are grouped into three major sections and connect the three concepts of test, error, and debug. These patterns and their hierarchical relationship shape a pattern language that introduces a solution to solve software errors in a known testing context. Finally, we will introduce our developed framework ADE as a sample implementation to support a pattern of proposed language, which aims to automate the whole process of evolving software design via evolutionary methods.

Critical Analysis of Decision Making Experience with a Machine Learning Approach in Playing Ayo Game

The major goal in defining and examining game scenarios is to find good strategies as solutions to the game. A plausible solution is a recommendation to the players on how to play the game, which is represented as strategies guided by the various choices available to the players. These choices invariably compel the players (decision makers) to execute an action following some conscious tactics. In this paper, we proposed a refinement-based heuristic as a machine learning technique for human-like decision making in playing Ayo game. The result showed that our machine learning technique is more adaptable and more responsive in making decision than human intelligence. The technique has the advantage that a search is astutely conducted in a shallow horizon game tree. Our simulation was tested against Awale shareware and an appealing result was obtained.

Prediction of Kinematic Viscosity of Binary Mixture of Poly (Ethylene Glycol) in Water using Artificial Neural Networks

An artificial neural network (ANN) model is presented for the prediction of kinematic viscosity of binary mixtures of poly (ethylene glycol) (PEG) in water as a function of temperature, number-average molecular weight and mass fraction. Kinematic viscosities data of aqueous solutions for PEG (0.55419×10-6 – 9.875×10-6 m2/s) were obtained from the literature for a wide range of temperatures (277.15 - 338.15 K), number-average molecular weight (200 -10000), and mass fraction (0.0 – 1.0). A three layer feed-forward artificial neural network was employed. This model predicts the kinematic viscosity with a mean square error (MSE) of 0.281 and the coefficient of determination (R2) of 0.983. The results show that the kinematic viscosity of binary mixture of PEG in water could be successfully predicted using an artificial neural network model.

Flow Acoustics in Solid-Fluid Structures

The governing two-dimensional equations of a heterogeneous material composed of a fluid (allowed to flow in the absence of acoustic excitations) and a crystalline piezoelectric cubic solid stacked one-dimensionally (along the z direction) are derived and special emphasis is given to the discussion of acoustic group velocity for the structure as a function of the wavenumber component perpendicular to the stacking direction (being the x axis). Variations in physical parameters with y are neglected assuming infinite material homogeneity along the y direction and the flow velocity is assumed to be directed along the x direction. In the first part of the paper, the governing set of differential equations are derived as well as the imposed boundary conditions. Solutions are provided using Hamilton-s equations for the wavenumber vs. frequency as a function of the number and thickness of solid layers and fluid layers in cases with and without flow (also the case of a position-dependent flow in the fluid layer is considered). In the first part of the paper, emphasis is given to the small-frequency case. Boundary conditions at the bottom and top parts of the full structure are left unspecified in the general solution but examples are provided for the case where these are subject to rigid-wall conditions (Neumann boundary conditions in the acoustic pressure). In the second part of the paper, emphasis is given to the general case of larger frequencies and wavenumber-frequency bandstructure formation. A wavenumber condition for an arbitrary set of consecutive solid and fluid layers, involving four propagating waves in each solid region, is obtained again using the monodromy matrix method. Case examples are finally discussed.

Thermophoretic Deposition of Nanoparticles Due Toa Permeable Rotating Disk: Effects of Partial Slip, Magnetic Field, Thermal Radiation, Thermal-Diffusion, and Diffusion-Thermo

The present contribution deals with the thermophoretic deposition of nanoparticles over a rapidly rotating permeable disk in the presence of partial slip, magnetic field, thermal radiation, thermal-diffusion, and diffusion-thermo effects. The governing nonlinear partial differential equations such as continuity, momentum, energy and concentration are transformed into nonlinear ordinary differential equations using similarity analysis, and the solutions are obtained through the very efficient computer algebra software MATLAB. Graphical results for non-dimensional concentration and temperature profiles including thermophoretic deposition velocity and Stanton number (thermophoretic deposition flux) in tabular forms are presented for a range of values of the parameters characterizing the flow field. It is observed that slip mechanism, thermal-diffusion, diffusion-thermo, magnetic field and radiation significantly control the thermophoretic particles deposition rate. The obtained results may be useful to many industrial and engineering applications.

Study on a Nested Cartesian Grid Method

In this paper, the local grid refinement is focused by using a nested grid technique. The Cartesian grid numerical method is developed for simulating unsteady, viscous, incompressible flows with complex immersed boundaries. A finite volume method is used in conjunction with a two-step fractional-step procedure. The key aspects that need to be considered in developing such a nested grid solver are imposition of interface conditions on the inter-block and accurate discretization of the governing equation in cells that are with the inter-block as a control surface. A new interpolation procedure is presented which allows systematic development of a spatial discretization scheme that preserves the spatial accuracy of the underlying solver. The present nested grid method has been tested by two numerical examples to examine its performance in the two dimensional problems. The numerical examples include flow past a circular cylinder symmetrically installed in a Channel and flow past two circular cylinders with different diameters. From the numerical experiments, the ability of the solver to simulate flows with complicated immersed boundaries is demonstrated and the nested grid approach can efficiently speed up the numerical solutions.

Surviving Abiotic Stress: The Relationship between High Light and High Salt Tolerance

The mechanism of abiotic stress tolerance is crucial for plants to survive in harsh condition and the knowledge of this mechanism can be use to solve the problem of declining productivity of plants or crops around the world. However in-depth description is still unclear and it is argued, in particular that there is a relationship between high salinity tolerance and the ability to tolerate high light condition. In this study, Dunaliella salina, which can withstand high salt was used as a model. Chlorophyll fluorometer for nonphotochemical quenching (NPQ) measurement and high-performance liquid chromatography for pigment determination was used. The results show that NPQ value and the amount of pigment were increased along with the levels of salinity. However, it establish a clear relationship between high salt and high light but the further study to optimized the solutions mentioned above is still required.

2 – Block 3 - Point Modified Numerov Block Methods for Solving Ordinary Differential Equations

In this paper, linear multistep technique using power series as the basis function is used to develop the block methods which are suitable for generating direct solution of the special second order ordinary differential equations of the form y′′ = f(x,y), a < = x < = b with associated initial or boundary conditions. The continuaous hybrid formulations enable us to differentiate and evaluate at some grids and off – grid points to obtain two different three discrete schemes, each of order (4,4,4)T, which were used in block form for parallel or sequential solutions of the problems. The computational burden and computer time wastage involved in the usual reduction of second order problem into system of first order equations are avoided by this approach. Furthermore, a stability analysis and efficiency of the block method are tested on linear and non-linear ordinary differential equations whose solutions are oscillatory or nearly periodic in nature, and the results obtained compared favourably with the exact solution.

Functional Decomposition Based Effort Estimation Model for Software-Intensive Systems

An effort estimation model is needed for softwareintensive projects that consist of hardware, embedded software or some combination of the two, as well as high level software solutions. This paper first focuses on functional decomposition techniques to measure functional complexity of a computer system and investigates its impact on system development effort. Later, it examines effects of technical difficulty and design team capability factors in order to construct the best effort estimation model. With using traditional regression analysis technique, the study develops a system development effort estimation model which takes functional complexity, technical difficulty and design team capability factors as input parameters. Finally, the assumptions of the model are tested.

A Study on Roles of the Community Design in Crime Prevention: Focusing on Project called Root out Crime by Design in South Korea

In the meantime, there were lots of hardware solutions like products or urban facilities for crime prevention in the public design area. Meanwhile, people have growing interest in public design so by making a village; community design in public design is getting active by the society. The system for crime prevention is actively done by the citizens who created the community. Regarding the social situation, in this project, we saw it as a kind of community design practices and researched about 'how does community design influence Crime prevention?' The purpose of this study is to propose the community design as a way of preventing the crime in the city. First, we found out about the definition, elements and methods of community design by reviewing the theory. And then, this study analyzed the case that was enforced in Seoul and organize the elements and methods of community design. This study can be refer to Public Design based on civil participation and make the community design area contribute to expand the way of solving social problems.

Enhanced Particle Swarm Optimization Approach for Solving the Non-Convex Optimal Power Flow

An enhanced particle swarm optimization algorithm (PSO) is presented in this work to solve the non-convex OPF problem that has both discrete and continuous optimization variables. The objective functions considered are the conventional quadratic function and the augmented quadratic function. The latter model presents non-differentiable and non-convex regions that challenge most gradient-based optimization algorithms. The optimization variables to be optimized are the generator real power outputs and voltage magnitudes, discrete transformer tap settings, and discrete reactive power injections due to capacitor banks. The set of equality constraints taken into account are the power flow equations while the inequality ones are the limits of the real and reactive power of the generators, voltage magnitude at each bus, transformer tap settings, and capacitor banks reactive power injections. The proposed algorithm combines PSO with Newton-Raphson algorithm to minimize the fuel cost function. The IEEE 30-bus system with six generating units is used to test the proposed algorithm. Several cases were investigated to test and validate the consistency of detecting optimal or near optimal solution for each objective. Results are compared to solutions obtained using sequential quadratic programming and Genetic Algorithms.

Simulation of Dam Break using Finite Volume Method

Today, numerical simulation is a powerful tool to solve various hydraulic engineering problems. The aim of this research is numerical solutions of shallow water equations using finite volume method for Simulations of dam break over wet and dry bed. In order to solve Riemann problem, Roe-s approximate solver is used. To evaluate numerical model, simulation was done in 1D and 2D states. In 1D state, two dam break test over dry bed (with and without friction) were studied. The results showed that Structural failure around the dam and damage to the downstream constructions in bed without friction is more than friction bed. In 2D state, two tests for wet and dry beds were done. Generally in wet bed case, waves are propagated to canal sides but in dry bed it is not significant. Therefore, damage to the storage facilities and agricultural lands in wet bed case is more than in dry bed.

An Unstructured Finite-volume Technique for Shallow-water Flows with Wetting and Drying Fronts

An unstructured finite volume numerical model is presented here for simulating shallow-water flows with wetting and drying fronts. The model is based on the Green-s theorem in combination with Chorin-s projection method. A 2nd-order upwind scheme coupled with a Least Square technique is used to handle convection terms. An Wetting and drying treatment is used in the present model to ensures the total mass conservation. To test it-s capacity and reliability, the present model is used to solve the Parabolic Bowl problem. We compare our numerical solutions with the corresponding analytical and existing standard numerical results. Excellent agreements are found in all the cases.

Optimal Control of Viscoelastic Melt Spinning Processes

The optimal control problem for the viscoelastic melt spinning process has not been reported yet in the literature. In this study, an optimal control problem for a mathematical model of a viscoelastic melt spinning process is considered. Maxwell-Oldroyd model is used to describe the rheology of the polymeric material, the fiber is made of. The extrusion velocity of the polymer at the spinneret as well as the velocity and the temperature of the quench air and the fiber length serve as control variables. A constrained optimization problem is derived and the first–order optimality system is set up to obtain the adjoint equations. Numerical solutions are carried out using a steepest descent algorithm. A computer program in MATLAB is developed for simulations.

Application of Wavelet Neural Networks in Optimization of Skeletal Buildings under Frequency Constraints

The main goal of the present work is to decrease the computational burden for optimum design of steel frames with frequency constraints using a new type of neural networks called Wavelet Neural Network. It is contested to train a suitable neural network for frequency approximation work as the analysis program. The combination of wavelet theory and Neural Networks (NN) has lead to the development of wavelet neural networks. Wavelet neural networks are feed-forward networks using wavelet as activation function. Wavelets are mathematical functions within suitable inner parameters, which help them to approximate arbitrary functions. WNN was used to predict the frequency of the structures. In WNN a RAtional function with Second order Poles (RASP) wavelet was used as a transfer function. It is shown that the convergence speed was faster than other neural networks. Also comparisons of WNN with the embedded Artificial Neural Network (ANN) and with approximate techniques and also with analytical solutions are available in the literature.

An Intelligent System for Phish Detection, using Dynamic Analysis and Template Matching

Phishing, or stealing of sensitive information on the web, has dealt a major blow to Internet Security in recent times. Most of the existing anti-phishing solutions fail to handle the fuzziness involved in phish detection, thus leading to a large number of false positives. This fuzziness is attributed to the use of highly flexible and at the same time, highly ambiguous HTML language. We introduce a new perspective against phishing, that tries to systematically prove, whether a given page is phished or not, using the corresponding original page as the basis of the comparison. It analyzes the layout of the pages under consideration to determine the percentage distortion between them, indicative of any form of malicious alteration. The system design represents an intelligent system, employing dynamic assessment which accurately identifies brand new phishing attacks and will prove effective in reducing the number of false positives. This framework could potentially be used as a knowledge base, in educating the internet users against phishing.

Revisiting Distributed Protocols for Mobility at the Application Layer

During more than a decade, many proposals and standards have been designed to deal with the mobility issues; however, there are still some serious limitations in basing solutions on them. In this paper we discuss the possibility of handling mobility at the application layer. We do this while revisiting the conventional implementation of the Two Phase Commit (2PC) protocol which is a fundamental asset of transactional technology for ensuring the consistent commitment of distributed transactions. The solution is based on an execution framework providing an efficient extension that is aware of the mobility and preserves the 2PC principle.

AGHAZ : An Expert System Based approach for the Translation of English to Urdu

Machine Translation (MT 3) of English text to its Urdu equivalent is a difficult challenge. Lot of attempts has been made, but a few limited solutions are provided till now. We present a direct approach, using an expert system to translate English text into its equivalent Urdu, using The Unicode Standard, Version 4.0 (ISBN 0-321-18578-1) Range: 0600–06FF. The expert system works with a knowledge base that contains grammatical patterns of English and Urdu, as well as a tense and gender-aware dictionary of Urdu words (with their English equivalents).

Multi-Objective Cellular Manufacturing System under Machines with Different Life-Cycle using Genetic Algorithm

In this paper a multi-objective nonlinear programming model of cellular manufacturing system is presented which minimize the intercell movements and maximize the sum of reliability of cells. We present a genetic approach for finding efficient solutions to the problem of cell formation for products having multiple routings. These methods find the non-dominated solutions and according to decision makers prefer, the best solution will be chosen.

Adsorption of Methylene Blue from Aqueous Solution on the Surface of Znapso-34 Nanoporous Material

The effects of equilibrium time, solution pH, and sorption temperature of cationic methylene blue (MB) adsorption on nanoporous metallosilicoaluminophosphate ZnAPSO-34 was studied using a batch equilibration method. UV–VIS spectroscopy was used to obtain the adsorption isotherms at 20° C. The optimum period for adsorption was 300 min. However, MB removal increased from 81,82 % to 94,81 %. The equilibrium adsorption data was analyzed by using Langmuir, Freundlich and Temkin isotherm models. Langmuir isotherm was found to be the better-fitting model and the process followed pseudo second–order kinetics. The results showed that ZnAPSO-34 could be employed as an effective material and could be an attractive alternative for the removal of dyes and colors from aqueous solutions.