Fundamental Research on Factors Affecting the Under-Film Corrosion Behavior of Coated Steel Members

Firstly, in order to examine the influence of the remaining amount of the rust on the coating film durability, the accelerated deterioration tests were carried out. In order to prepare test specimens, uncoated steel plates were corroded by the Salt Spray Test (SST) prior to the accelerated deterioration tests, and then the prepared test specimens were coated by epoxy resin and phthalic acid resin each of which has different gas-barrier performance. As the result, it was confirmed that the under-film corrosion occurred in the area and the adjacency to great quantities of salt exists in the rust, and did not occurred in the specimen which was applied the epoxy resin paint after the surface preparation by the power tool. Secondly, in order to clarify the influence of the corrosive factors on the coating film durability, outdoor exposure tests were conducted for one year on actual steel bridge located at a coastal area. The tests specimens consist of coated corroded plates and the uncoated steel plates, and they were installed on the different structural members of the bridge for one year. From the test results, the uncoated steel plates which were installed on the underside of the member are easily corrosive and had highly correlation with the amount of salt in the rust. On the other hand, the most corrosive under-film steel was the vertical surface of the web plate. Thus, it was confirmed that under-film corrosion rate was not match with corrosion rate of the uncoated steel. Consequently, it is estimated that the main factors of under-film corrosion are gas-barrier property of coating film and corrosive factors such as water vapor and temperature. The salt which significantly corrodes the uncoated steel plate is not directly related to the under-film corrosion.

Integration of Best Practices and Requirements for Preliminary E-Learning Courses

This study will examine how IT practitioners can be motivated for IT studies and which kind of support they need during their occupational studies. Within this research project, the challenge of supporting students being engaged in business for several years arose. Here, it is especially important to successfully guide them through their studies. The problem of this group is that they finished their school education years ago. In order to gather first experiences, preliminary e-learning courses were introduced and tested with a group of users studying General Management. They had to work with these courses and have been questioned later on about their approach to the different methods. Moreover, a second group of potential students was interviewed with the help of online questionnaires to give information about their expectations regarding extra occupational studies. We also want to present best practices and cases in e-education in the subarea of mathematics and distance learning. Within these cases and practices, we use state of the art systems and technologies in e-education to find a way to increase teaching quality and the success of students. Our research indicated that the first group of enrolled students appreciated the new preliminary e-learning courses. The second group of potential students was convinced of this way of learning as a significant component of extra occupational studies. It can be concluded that this part of the project clarified the acceptance of the e-learning strategy by both groups and led to satisfactory results with the enrolled students.

Investigation of the Recycling of Geopolymer Cement Wastes as Fine Aggregates in Mortar Mixes

Fly ash-slag based Geopolymer Cement (GPC) is presenting mechanical properties and environmental advantages that make it the predominant “green” alternative to Portland Cement (PC). Although numerous life-cycle analyses praising its environmental advantages, disposal after the end of its life remains as an issue that has been barely explored. The present study is investigating the recyclability of fly ash-slag GPC as aggregate in mortars. The purpose of the study was to evaluate the effect of GPC fine Recycled Aggregates (RA), at replacement levels of 25% and 50%, on the main mechanical properties of PC and GPC mortar mixes. The results were compared with those obtained by corresponding mixes incorporating natural and PC-RA. The main physical properties of GPC-RA were examined and proven to be comparable to those of PC-RA and slightly inferior to those of natural sand. A negligible effect was observed at 28-day compressive and flexural strength of PC mortars with GPC aggregates having a milder effect than PC. As far as GPC mortars are concerned, the influence of GPC aggregates was enhancing for the investigated mechanical properties. Additionally, a screening test showed that recycled geopolymer aggregates are not prone of inducing alkali silica reaction.

Clay Mineralogy of Mukdadiya Formation in Shewasoor Area: Northeastern Kirkuk City, Iraq

14 mudstone samples were collected within the sedimentary succession of Mukdadiya Formation (Late Miocene – Early Pliocene) from Shewasoor area at Northeastern Iraq. The samples were subjected to laboratory studies including mineralogical analysis (using X-ray Diffraction technique) in order to identify the clay mineralogy of Mukdadiya Formation of both clay and non-clay minerals. The results of non-clay minerals are: quartz, feldspar and carbonate (calcite and dolomite) minerals. The clay minerals are: montmorillonite, kaolinite, palygorskite, chlorite, and illite by the major basal reflections of each mineral. The origins of these minerals are deduced also.

Self-Efficacy Perceptions and the Attitudes of Prospective Teachers towards Assessment and Evaluation

Making the right decisions about students depends on teachers’ use of the assessment and evaluation techniques effectively. In order to do that, teachers should have positive attitudes and adequate self-efficacy perception towards assessment and evaluation. The purpose of this study is to investigate relationship between self-efficacy perception and the attitudes of prospective teachers towards assessment and evaluation and what kind of differences these issues have in terms of a variety of demographic variables. The study group consisted of 277 prospective teachers who have been studying in different departments of Marmara University, Faculty of Education. In this study, ‘Personal Information Form’, ‘A Perceptual Scale for Measurement and Evaluation of Prospective Teachers Self-Efficacy in Education’ and ‘Attitudes toward Educational Measurement Inventory’ are applied. As a result, positive correlation was found between self-efficacy perceptions and the attitudes of prospective teachers towards assessment and evaluation. Considering different departments, there is a significant difference between the mean score of attitudes of prospective teachers and between the mean score of self-efficacy perceptions of them. However, considering variables of attending statistics class and the class types at the graduated high school, there is no significant difference between the mean score of attitudes of prospective teachers and between the mean score of self-efficacy perceptions of them.

Breast Cancer Survivability Prediction via Classifier Ensemble

This paper presents a classifier ensemble approach for predicting the survivability of the breast cancer patients using the latest database version of the Surveillance, Epidemiology, and End Results (SEER) Program of the National Cancer Institute. The system consists of two main components; features selection and classifier ensemble components. The features selection component divides the features in SEER database into four groups. After that it tries to find the most important features among the four groups that maximizes the weighted average F-score of a certain classification algorithm. The ensemble component uses three different classifiers, each of which models different set of features from SEER through the features selection module. On top of them, another classifier is used to give the final decision based on the output decisions and confidence scores from each of the underlying classifiers. Different classification algorithms have been examined; the best setup found is by using the decision tree, Bayesian network, and Na¨ıve Bayes algorithms for the underlying classifiers and Na¨ıve Bayes for the classifier ensemble step. The system outperforms all published systems to date when evaluated against the exact same data of SEER (period of 1973-2002). It gives 87.39% weighted average F-score compared to 85.82% and 81.34% of the other published systems. By increasing the data size to cover the whole database (period of 1973-2014), the overall weighted average F-score jumps to 92.4% on the held out unseen test set.

Reduction Conditions of Briquetted Solid Wastes Generated by the Integrated Iron and Steel Plant

Iron oxides are the main input to produce iron in integrated iron and steel plants. During production of iron from iron oxides, some wastes with high iron content occur. These main wastes can be classified as basic oxygen furnace (BOF) sludge, flue dust and rolling scale. Recycling of these wastes has a great importance for both environmental effects and reduction of production costs. In this study, recycling experiments were performed on basic oxygen furnace sludge, flue dust and rolling scale which contain 53.8%, 54.3% and 70.2% iron respectively. These wastes were mixed together with coke as reducer and these mixtures are pressed to obtain cylindrical briquettes. These briquettes were pressed under various compacting forces from 1 ton to 6 tons. Also, both stoichiometric and twice the stoichiometric cokes were added to investigate effect of coke amount on reduction properties of the waste mixtures. Then, these briquettes were reduced at 1000°C and 1100°C during 30, 60, 90, 120 and 150 min in a muffle furnace. According to the results of reduction experiments, the effect of compacting force, temperature and time on reduction ratio of the wastes were determined. It is found that 1 ton compacting force, 150 min reduction time and 1100°C are the optimum conditions to obtain reduction ratio higher than 75%.

Assessment of Wastewater Reuse Potential for an Enamel Coating Industry

In order to eliminate water scarcity problems, effective precautions must be taken. Growing competition for water is increasingly forcing facilities to tackle their own water scarcity problems. At this point, application of wastewater reclamation and reuse results in considerable economic advantageous. In this study, an enamel coating facility, which is one of the high water consumed facilities, is evaluated in terms of its wastewater reuse potential. Wastewater reclamation and reuse can be defined as one of the best available techniques for this sector. Hence, process and pollution profiles together with detailed characterization of segregated wastewater sources are appraised in a way to find out the recoverable effluent streams arising from enamel coating operations. Daily, 170 m3 of process water is required and 160 m3 of wastewater is generated. The segregated streams generated by two enamel coating processes are characterized in terms of conventional parameters. Relatively clean segregated wastewater streams (reusable wastewaters) are separately collected and experimental treatability studies are conducted on it. The results reflected that the reusable wastewater fraction has an approximate amount of 110 m3/day that accounts for 68% of the total wastewaters. The need for treatment applicable on reusable wastewaters is determined by considering water quality requirements of various operations and characterization of reusable wastewater streams. Ultra-filtration (UF), Nano-filtration (NF) and Reverse Osmosis (RO) membranes are subsequently applied on reusable effluent fraction. Adequate organic matter removal is not obtained with the mentioned treatment sequence.

The Intonation of Romanian Greetings: A Sociolinguistics Approach

In a language the inventory of greetings is dynamic with frequent input and output, although this is hardly noticed by the speakers. In this register, there are a number of constant, conservative elements that survive different language models (among them, the classic formulae: bună ziua! (good afternoon!), bună seara! (good evening!), noapte bună! (good night!), la revedere! (goodbye!) and a number of items that fail to pass the test of time, according to language use at a time (ciao!, pa!, bai!). The source of innovation depends both of internal factors (contraction, conversion, combination of classic formulae of greetings), and of external ones (borrowings and calques). Their use imposes their frequencies at once, namely the elimination of the use of others. This paper presents a sociolinguistic approach of contemporary Romanian greetings, based on prosodic surveys in two research projects: AMPRom, and SoRoEs. Romanian language presents a rich inventory of questions (especially partial interrogatives questions/WH-Q) which are used as greetings, alone or, more commonly accompanying a proper greeting. The representative of the typical formulae is Ce mai faci? (How are you?), which, unlike its English counterpart How do you do?, has not become a stereotype, but retains an obvious emotional impact, while serving as a mark of sociolinguistic group. The analyzed corpus consists of structures containing greetings recorded in the main Romanian cultural (urban) centers. From the methodological point of view, the acoustic analysis of the recorded data is performed using software tools (GoldWave, Praat), identifying intonation patterns related to three sociolinguistics variables: age, sex and level of education. The intonation patterns of the analyzed statements are at the interface between partial questions and typical greetings.

Quality Management in Spice Paprika Production as a Synergy of Internal and External Quality Measures

Spice paprika is a major spice commodity in the European Union (EU), produced locally and imported from non-EU countries, reported not only for chemical and microbiological contamination, but also for fraud. The effective interaction between producers’ quality management practices and government and EU activities is described on the example of spice paprika production and control in Hungary, a country of leading spice paprika producer and per capita consumer in Europe. To demonstrate the importance of various contamination factors in the Hungarian production and EU trade of spice paprika, several aspects concerning food safety of this commodity are presented. Alerts in the Rapid Alert System for Food and Feed (RASFF) of the EU between 2005 and 2013, as well as Hungarian state inspection results on spice paprika in 2004 are discussed, and quality non-compliance claims regarding spice paprika among EU member states are summarized in by means of network analysis. Quality assurance measures established along the spice paprika production technology chain at the leading Hungarian spice paprika manufacturer, Kalocsai Fűszerpaprika Zrt. are surveyed with main critical control points identified. The structure and operation of the Hungarian state food safety inspection system is described. Concerted performance of the latter two quality management systems illustrates the effective interaction between internal (manufacturer) and external (state) quality control measures.

The Role of Emotions in the Consumer: Theoretical Review and Analysis of Components

The early eighties saw the rise of a new research trend in several prestigious journals, mainly articles that related emotions with the decision-making processes of the consumer, and stopped treating them as external elements. That is why we ask questions such as: what are emotions? Are there different types of emotions? What components do they have? Which theories exist about them? In this study, we will review the main theories and components of emotion analysing the cognitive factor and the different emotional states that are generally recognizable with a focus in the classic debate as to whether they occur before the cognitive process or the affective process.

Land-Use Suitability Analysis for Merauke Agriculture Estates

Merauke district in Papua, Indonesia has a strategic position and natural potential for the development of agricultural industry. The development of agriculture in this region is being accelerated as part of Indonesian Government’s declaration announcing Merauke as one of future national food barns. Therefore, land-use suitability analysis for Merauke need to be performed. As a result, the mapping for future agriculture-based industries can be done optimally. In this research, a case study is carried out in Semangga sub district. The objective of this study is to determine the suitability of Merauke land for some food crops. A modified agro-ecological zoning is applied to reach the objective. In this research, land cover based on satellite imagery is combined with soil, water and climate survey results to come up with preliminary zoning. Considering the special characteristics of Merauke community, the agricultural zoning maps resulted based on those inputs will be combined with socio-economic information and culture to determine the final zoning map for agricultural industry in Merauke. Examples of culture are customary rights of local residents and the rights of local people and their own local food patterns. This paper presents the results of first year of the two-year research project funded by The Indonesian Government through MP3EI schema. It shares the findings of land cover studies, the distribution of soil physical and chemical parameters, as well as suitability analysis of Semangga sub-district for five different food plants.

Invasion of Pectinatella magnifica in Freshwater Resources of the Czech Republic

Pectinatella magnifica (Leidy, 1851) is an invasive freshwater animal that lives in colonies. A colony of Pectinatella magnifica (a gelatinous blob) can be up to several feet in diameter large and under favorable conditions it exhibits an extreme growth rate. Recently European countries around rivers of Elbe, Oder, Danube, Rhine and Vltava have confirmed invasion of Pectinatella magnifica, including freshwater reservoirs in South Bohemia (Czech Republic). Our project (Czech Science Foundation, GAČR P503/12/0337) is focused onto biology and chemistry of Pectinatella magnifica. We monitor the organism occurrence in selected South Bohemia ponds and sandpits during the last years, collecting information about physical properties of surrounding water, and sampling the colonies for various analyses (classification, maps of secondary metabolites, toxicity tests). Because the gelatinous matrix is during the colony lifetime also a host for algae, bacteria and cyanobacteria (co-habitants), in this contribution, we also applied a high performance liquid chromatography (HPLC) method for determination of potentially present cyanobacterial toxins (microcystin-LR, microcystin-RR, nodularin). Results from the last 3-year monitoring show that these toxins are under limit of detection (LOD), so that they do not represent a danger yet. The final goal of our study is to assess toxicity risks related to fresh water resources invaded by Pectinatella magnifica, and to understand the process of invasion, which can enable to control it.

An Improved Approach for Hybrid Rocket Injection System Design

Hybrid propulsion combines beneficial properties of both solid and liquid rockets, such as multiple restarts, throttability as well as simplicity and reduced costs. A nitrous oxide (N2O)/paraffin-based hybrid rocket engine demonstrator is currently under development at the Italian Aerospace Research Center (CIRA) within the national research program HYPROB, funded by the Italian Ministry of Research. Nitrous oxide belongs to the class of self-pressurizing propellants that exhibit a high vapor pressure at standard ambient temperature. This peculiar feature makes those fluids very attractive for space rocket applications because it avoids the use of complex pressurization systems, leading to great benefits in terms of weight savings and reliability. To avoid feed-system-coupled instabilities, the phase change is required to occur through the injectors. In this regard, the oxidizer is stored in liquid condition while target chamber pressures are designed to lie below vapor pressure. The consequent cavitation and flash vaporization constitute a remarkably complex phenomenology that arises great modelling challenges. Thus, it is clear that the design of the injection system is fundamental for the full exploitation of hybrid rocket engine throttability. The Analytical Hierarchy Process has been used to select the injection architecture as best compromise among different design criteria such as functionality, technology innovation and cost. The impossibility to use engineering simplified relations for the dimensioning of the injectors led to the needs of applying a numerical approach based on OpenFOAM®. The numerical tool has been validated with selected experimental data from literature. Quantitative, as well as qualitative comparisons are performed in terms of mass flow rate and pressure drop across the injector for several operating conditions. The results show satisfactory agreement with the experimental data. Modeling assumptions, together with their impact on numerical predictions are discussed in the paper. Once assessed the reliability of the numerical tool, the injection plate has been designed and sized to guarantee the required amount of oxidizer in the combustion chamber and therefore to assure high combustion efficiency. To this purpose, the plate has been designed with multiple injectors whose number and diameter have been selected in order to reach the requested mass flow rate for the two operating conditions of maximum and minimum thrust. The overall design has been finally verified through three-dimensional computations in cavitating non-reacting conditions and it has been verified that the proposed design solution is able to guarantee the requested values of mass flow rates.

Role of Organic Wastewater Constituents in Iron Redox Cycling for Ferric Sludge Reuse in the Fenton-Based Treatment

The practical application of the Fenton-based treatment method for organic compounds-contaminated water purification is limited mainly because of the large amount of ferric sludge formed during the treatment, where ferrous iron (Fe(II)) is used as the activator of the hydrogen peroxide oxidation processes. Reuse of ferric sludge collected from clarifiers to substitute Fe(II) salts allows reducing the total cost of Fenton-type treatment technologies and minimizing the accumulation of hazardous ferric waste. Dissolution of ferric iron (Fe(III)) from the sludge to liquid phase at acidic pH and autocatalytic transformation of Fe(III) to Fe(II) by phenolic compounds (tannic acid, lignin, phenol, catechol, pyrogallol and hydroquinone) added or present as water/wastewater constituents were found to be essentially involved in the Fenton-based oxidation mechanism. Observed enhanced formation of highly reactive species, hydroxyl radicals, resulted in a substantial organic contaminant degradation increase. Sludge reuse at acidic pH and in the presence of ferric iron reductants is a novel strategy in the Fenton-based treatment application for organic compounds-contaminated water purification.

Applications for Accounting of Inherited Object-Oriented Class Members

A class in an Object-Oriented (OO) system is the basic unit of design, and it encapsulates a set of attributes and methods. In OO systems, instead of redefining the attributes and methods that are included in other classes, a class can inherit these attributes and methods and only implement its unique attributes and methods, which results in reducing code redundancy and improving code testability and maintainability. Such mechanism is called Class Inheritance. However, some software engineering applications may require accounting for all the inherited class members (i.e., attributes and methods). This paper explains how to account for inherited class members and discusses the software engineering applications that require such consideration.

Scheduled Maintenance and Downtime Cost in Aircraft Maintenance Management

During aircraft maintenance scheduling, operator calculates the budget of the maintenance. Usually, this calculation includes only the costs that are directly related to the maintenance process such as cost of labor, material, and equipment. In some cases, overhead cost is also included. However, in some of those, downtime cost is neglected claiming that grounding is a natural fact of maintenance; therefore, it is not considered as part of the analytical decision-making process. Based on the normalized data, we introduce downtime cost with its monetary value and add its seasonal character. We envision that the rest of the model, which works together with the downtime cost, could be checked with the real life cases, through the review of MRO cost and airline spending in the particular and scheduled maintenance events.

Discriminant Analysis as a Function of Predictive Learning to Select Evolutionary Algorithms in Intelligent Transportation System

In this paper, we present the use of the discriminant analysis to select evolutionary algorithms that better solve instances of the vehicle routing problem with time windows. We use indicators as independent variables to obtain the classification criteria, and the best algorithm from the generic genetic algorithm (GA), random search (RS), steady-state genetic algorithm (SSGA), and sexual genetic algorithm (SXGA) as the dependent variable for the classification. The discriminant classification was trained with classic instances of the vehicle routing problem with time windows obtained from the Solomon benchmark. We obtained a classification of the discriminant analysis of 66.7%.

Conduction Model Compatible for Multi-Physical Domain Dynamic Investigations: Bond Graph Approach

In the current paper, a domain independent conduction model compatible for multi-physical system dynamic investigations is suggested. By means of a port-based approach, a classical nonlinear conduction model containing physical states is first represented. A compatible discrete configuration of the thermal domain in line with the elastic domain is then generated through the enhancement of the configuration of the conventional thermal element. The presented simulation results of a sample structure indicate that the suggested conductive model can cover a wide range of dynamic behavior of the thermal domain.

Analytical and Statistical Study of the Parameters of Expansive Soil

The disorders caused by the shrinking-swelling phenomenon are prevalent in arid and semi-arid in the presence of swelling clay. This soil has the characteristic of changing state under the effect of water solicitation (wetting and drying). A set of geotechnical parameters is necessary for the characterization of this soil type, such as state parameters, physical and chemical parameters and mechanical parameters. Some of these tests are very long and some are very expensive, hence the use or methods of predictions. The complexity of this phenomenon and the difficulty of its characterization have prompted researchers to use several identification parameters in the prediction of swelling potential. This document is an analytical and statistical study of geotechnical parameters affecting the potential of swelling clays. This work is performing on a database obtained from investigations swelling Algerian soil. The obtained observations have helped us to understand the soil swelling structure and its behavior.