Retraction Free Motion Approach and Its Application in Automated Robotic Edge Finishing and Inspection Processes

In this paper, a motion generation algorithm for a six Degrees of Freedom (DoF) robotic hand in a static environment is presented. The purpose of developing this method is to be used in the path generation of the end-effector for edge finishing and inspection processes by utilizing the CAD model of the considered workpiece. Nonetheless, the proposed algorithm may be extended to be applicable for other similar manufacturing processes. A software package programmed in the application programming interface (API) of SolidWorks generates tool path data for the robot. The proposed method significantly simplifies the given problem, resulting in a reduction in the CPU time needed to generate the path, and offers an efficient overall solution. The ABB IRB2000 robot is chosen for executing the generated tool path.

Physical Properties and Resistant Starch Content of Rice Flour Residues Hydrolyzed by α-Amylase

Enzymatic modification of rice flour can produce highly functional derivatives use in food industries. This study aimed to evaluate the physical properties and resistant starch content of rice flour residues hydrolyzed by α-amylase. Rice flour hydrolyzed by α-amylase (60 and 300 u/g) for 1, 24 and 48 hours were investigated. Increasing enzyme concentration and hydrolysis time resulted in decreased rice flour residue’s lightness (L*) but increased redness (a*) and yellowness (b*) of rice flour residues. The resistant starch content and peak viscosity increased when hydrolysis time increased. Pasting temperature, trough viscosity, breakdown, final viscosity, setback and peak time of the hydrolyzed flours were not significantly different (p>0.05). The morphology of native flour was smooth without observable pores and polygonal with sharp angles and edges. However, after hydrolysis, granules with a slightly rough and porous surface were observed and a rough and porous surface was increased with increasing hydrolyzed time. The X-ray diffraction patterns of native flour showed A-type configuration, which hydrolyzed flour showed almost 0% crystallinity indicated that both amorphous and crystalline structures of starch were simultaneously hydrolyzed by α-amylase.

Co-payment Strategies for Chronic Medications: A Qualitative and Comparative Analysis at European Level

The management of pharmacotherapy and the process of dispensing medicines is becoming critical in clinical pharmacy due to the increase of incidence and prevalence of chronic diseases, the complexity and customization of therapeutic regimens, the introduction of innovative and more expensive medicines, the unbalanced relation between expenditure and revenue as well as due to the lack of rationalization associated with medication use. For these reasons, co-payments emerged in Europe in the 70s and have been applied over the past few years in healthcare. Co-payments lead to a rationing and rationalization of user’s access under healthcare services and products, and simultaneously, to a qualification and improvement of the services and products for the end-user. This analysis, under hospital practices particularly and co-payment strategies in general, was carried out on all the European regions and identified four reference countries, that apply repeatedly this tool and with different approaches. The structure, content and adaptation of European co-payments were analyzed through 7 qualitative attributes and 19 performance indicators, and the results expressed in a scorecard, allowing to conclude that the German models (total score of 68,2% and 63,6% in both elected co-payments) can collect more compliance and effectiveness, the English models (total score of 50%) can be more accessible, and the French models (total score of 50%) can be more adequate to the socio-economic and legal framework. Other European models did not show the same quality and/or performance, so were not taken as a standard in the future design of co-payments strategies. In this sense, we can see in the co-payments a strategy not only to moderate the consumption of healthcare products and services, but especially to improve them, as well as a strategy to increment the value that the end-user assigns to these services and products, such as medicines.

Spatial Distribution of Socio-Economic Factors in Kogi State, Nigeria: Development Issues and Implication(s)

This study analyzed the spatial distribution of socio-economic factors in Kogi state with a view to examining its implications on the development of the state. Consequently, questionnaires were administered on both the selected individual respondents (784) in the state and on the administrative offices (local council offices, 21) to solicit relevant information on the spatial distribution of socio-economic factors in their areas. The collected data were tabulated and analyzed using percentages. The study revealed commerce/trade, education, and health care, etc. as the major socio-economic factors in the state but with marked variation/imbalance in their spatial distribution across the study area. The rural-based local government areas have far less of such important facilities. Conclusively, it was recommended that there is need for socio-economic transformation of living conditions of people in the study area especially by positively redistributing local political power and the resources that are abound in the state will be felt by everybody including the commoners.

Reliable Line-of-Sight and Non-Line-of-Sight Propagation Channel Identification in Ultra-Wideband Wireless Networks

The paper addresses the problem of line-of-sight (LOS) vs. non-line-of-sight (NLOS) propagation link identification in ultra-wideband (UWB) wireless networks, which is necessary for improving the accuracy of radiolocation and positioning applications. A LOS/NLOS likelihood hypothesis testing approach is applied based on exploiting distinctive statistical features of the channel impulse response (CIR) using parameters related to the “skewness” of the CIR and its root mean square (RMS) delay spread. A log-normal fit is presented for the probability densities of the CIR parameters. Simulation results show that different environments (residential, office, outdoor, etc.) have measurable differences in their CIR parameters’ statistics, which is then exploited in determining the nature of the propagation channels. Correct LOS/NLOS channel identification rates exceeding 90% are shown to be achievable for most types of environments. Additional improvement is also obtained by combining both CIR skewness and RMS delay statistics.

Granger Causal Nexus between Financial Development and Energy Consumption: Evidence from Cross Country Panel Data

This paper examines the Granger causal nexus between financial development and energy consumption in the group of 35 Financial Action Task Force (FATF) Countries over the period 1988-2012. The study uses two financial development indicators such as private sector credit and stock market capitalization and seven energy consumption indicators such as coal, oil, gas, electricity, hydro-electrical, nuclear and biomass. Using panel cointegration tests, the study finds that financial development and energy consumption are cointegrated, indicating the presence of a long-run relationship between the two. Using a panel vector error correction model (VECM), the study detects both bidirectional and unidirectional causality between financial development and energy consumption. The variation of this causality is due to the use of different proxies for both financial development and energy consumption. The policy implication of this study is that economic policies should recognize the differences in the financial development-energy consumption nexus in order to maintain sustainable development in the selected 35 FATF countries.

Quantification of GHGs Emissions from Electricity and Diesel Fuel Consumption in Basalt Mining Industry in Thailand

The mineral and mining industry is necessary for countries to have an adequate and reliable supply of materials to meet their socio-economic development. Despite its importance, the environmental impacts from mineral exploration are hugely significant. This study aimed to investigate and quantify the amount of GHGs emissions emitted from both electricity and diesel vehicle fuel consumption in basalt mining in Thailand. Plant A, located in the northeastern region of Thailand, was selected as a case study. Results indicated that total GHGs emissions from basalt mining and operation (Plant A) were approximately 2,501,086 kgCO2e and 1,997,412 kgCO2e in 2014 and 2015, respectively. The estimated carbon intensity ranged between 1.824 kgCO2e to 2.284 kgCO2e per ton of rock product. Scope 1 (direct emissions) was the dominant driver of its total GHGs compared to scope 2 (indirect emissions). As such, transport related combustion of diesel fuels generated the highest GHGs emission (65%) compared to emissions from purchased electricity (35%). Some of the potential implications for mining entities were also presented.

Investigation about Structural and Optical Properties of Bulk and Thin Film of 1H-CaAlSi by Density Functional Method

Optical properties of bulk and thin film of 1H-CaAlSi for two directions (1,0,0) and (0,0,1) were studied. The calculations are carried out by Density Functional Theory (DFT) method using full potential. GGA approximation was used to calculate exchange-correlation energy. The calculations are performed by WIEN2k package. The results showed that the absorption edge is shifted backward 0.82eV in the thin film than the bulk for both directions. The static values of the real part of dielectric function for four cases were obtained. The static values of the refractive index for four cases are calculated too. The reflectivity graphs have shown an intensive difference between the reflectivity of the thin film and the bulk in the ultraviolet region.

Extracting the Coupled Dynamics in Thin-Walled Beams from Numerical Data Bases

In this work we use the Discrete Proper Orthogonal Decomposition transform to characterize the properties of coupled dynamics in thin-walled beams by exploiting numerical simulations obtained from finite element simulations. The outcomes of the will improve our understanding of the linear and nonlinear coupled behavior of thin-walled beams structures. Thin-walled beams have widespread usage in modern engineering application in both large scale structures (aeronautical structures), as well as in nano-structures (nano-tubes). Therefore, detailed knowledge in regard to the properties of coupled vibrations and buckling in these structures are of great interest in the research community. Due to the geometric complexity in the overall structure and in particular in the cross-sections it is necessary to involve computational mechanics to numerically simulate the dynamics. In using numerical computational techniques, it is not necessary to over simplify a model in order to solve the equations of motions. Computational dynamics methods produce databases of controlled resolution in time and space. These numerical databases contain information on the properties of the coupled dynamics. In order to extract the system dynamic properties and strength of coupling among the various fields of the motion, processing techniques are required. Time- Proper Orthogonal Decomposition transform is a powerful tool for processing databases for the dynamics. It will be used to study the coupled dynamics of thin-walled basic structures. These structures are ideal to form a basis for a systematic study of coupled dynamics in structures of complex geometry.

Modelling the Behavior of Commercial and Test Textiles against Laundering Process by Statistical Assessment of Their Performance

Various exterior factors have perpetual effects on textile materials during wear, use and laundering in everyday life. In accordance with their frequency of use, textile materials are required to be laundered at certain intervals. The medium in which the laundering process takes place have inevitable detrimental physical and chemical effects on textile materials caused by the unique parameters of the process inherently existing. Connatural structures of various textile materials result in many different physical, chemical and mechanical characteristics. Because of their specific structures, these materials have different behaviors against several exterior factors. By modeling the behavior of commercial and test textiles as group-wise against laundering process, it is possible to disclose the relation in between these two groups of materials, which will lead to better understanding of their behaviors in terms of similarities and differences against the washing parameters of the laundering. Thus, the goal of the current research is to examine the behavior of two groups of textile materials as commercial textiles and as test textiles towards the main washing machine parameters during laundering process such as temperature, load quantity, mechanical action and level of water amount by concentrating on shrinkage, pilling, sewing defects, collar abrasion, the other defects other than sewing, whitening and overall properties of textiles. In this study, cotton fabrics were preferred as commercial textiles due to the fact that garments made of cotton are the most demanded products in the market by the textile consumers in daily life. Full factorial experimental set-up was used to design the experimental procedure. All profiles always including all of the commercial and the test textiles were laundered for 20 cycles by commercial home laundering machine to investigate the effects of the chosen parameters. For the laundering process, a modified version of ‘‘IEC 60456 Test Method’’ was utilized. The amount of detergent was altered as 0.5% gram per liter depending on varying load quantity levels. Datacolor 650®, EMPA Photographic Standards for Pilling Test and visual examination were utilized to test and characterize the textiles. Furthermore, in the current study the relation in between commercial and test textiles in terms of their performance was deeply investigated by the help of statistical analysis performed by MINITAB® package program modeling their behavior against the parameters of the laundering process. In the experimental work, the behaviors of both groups of textiles towards washing machine parameters were visually and quantitatively assessed in dry state.

The Morphology of Sri Lankan Text Messages

Communicating via a text or an SMS (Short Message Service) has become an integral part of our daily lives. With the increase in the use of mobile phones, text messaging has become a genre by itself worth researching and studying. It is undoubtedly a major phenomenon revealing language change. This paper attempts to describe the morphological processes of text language of urban bilinguals in Sri Lanka. It will be a typological study based on 500 English text messages collected from urban bilinguals residing in Colombo. The messages are selected by categorizing the deviant forms of language use apparent in text messages. These stylistic deviations are a deliberate skilled performance by the users of the language possessing an in-depth knowledge of linguistic systems to create new words and thereby convey their linguistic identity and individual and group solidarity via the message. The findings of the study solidifies arguments that the manipulation of language in text messages is both creative and appropriate. In addition, code mixing theories will be used to identify how existing morphological processes are adapted by bilingual users in Sri Lanka when texting. The study will reveal processes such as omission, initialism, insertion and alternation in addition to other identified linguistic features in text language. The corpus reveals the most common morphological processes used by Sri Lankan urban bilinguals when sending texts.

Time Temperature Dependence of Long Fiber Reinforced Polypropylene Manufactured by Direct Long Fiber Thermoplastic Process

In order to reduce fuel consumption, the weight of automobiles has to be reduced. Fiber reinforced polymers offer the potential to reach this aim because of their high stiffness to weight ratio. Additionally, the use of fiber reinforced polymers in automotive applications has to allow for an economic large-scale production. In this regard, long fiber reinforced thermoplastics made by direct processing offer both mechanical performance and processability in injection moulding and compression moulding. The work presented in this contribution deals with long glass fiber reinforced polypropylene directly processed in compression moulding (D-LFT). For the use in automotive applications both the temperature and the time dependency of the materials properties have to be investigated to fulfill performance requirements during crash or the demands of service temperatures ranging from -40 °C to 80 °C. To consider both the influence of temperature and time, quasistatic tensile tests have been carried out at different temperatures. These tests have been complemented by high speed tensile tests at different strain rates. As expected, the increase in strain rate results in an increase of the elastic modulus which correlates to an increase of the stiffness with decreasing service temperature. The results are in good accordance with results determined by dynamic mechanical analysis within the range of 0.1 to 100 Hz. The experimental results from different testing methods were grouped and interpreted by using different time temperature shift approaches. In this regard, Williams-Landel-Ferry and Arrhenius approach based on kinetics have been used. As the theoretical shift factor follows an arctan function, an empirical approach was also taken into consideration. It could be shown that this approach describes best the time and temperature superposition for glass fiber reinforced polypropylene manufactured by D-LFT processing.

Comparison of Cyclone Design Methods for Removal of Fine Particles from Plasma Generated Syngas

A waste-to-energy plasma system was designed by Necsa for commercial use to create electricity from unsorted municipal waste. Fly ash particles must be removed from the syngas stream at operating temperatures of 1000 °C and recycled back into the reactor for complete combustion. A 2D2D high efficiency cyclone separator was chosen for this purpose. During this study, two cyclone design methods were explored: The Classic Empirical Method (smaller cyclone) and the Flow Characteristics Method (larger cyclone). These designs were optimized with regard to efficiency, so as to remove at minimum 90% of the fly ash particles of average size 10 μm by 50 μm. Wood was used as feed source at a concentration of 20 g/m3 syngas. The two designs were then compared at room temperature, using Perspex test units and three feed gases of different densities, namely nitrogen, helium and air. System conditions were imitated by adapting the gas feed velocity and particle load for each gas respectively. Helium, the least dense of the three gases, would simulate higher temperatures, whereas air, the densest gas, simulates a lower temperature. The average cyclone efficiencies ranged between 94.96% and 98.37%, reaching up to 99.89% in individual runs. The lowest efficiency attained was 94.00%. Furthermore, the design of the smaller cyclone proved to be more robust, while the larger cyclone demonstrated a stronger correlation between its separation efficiency and the feed temperatures. The larger cyclone can be assumed to achieve slightly higher efficiencies at elevated temperatures. However, both design methods led to good designs. At room temperature, the difference in efficiency between the two cyclones was almost negligible. At higher temperatures, however, these general tendencies are expected to be amplified so that the difference between the two design methods will become more obvious. Though the design specifications were met for both designs, the smaller cyclone is recommended as default particle separator for the plasma system due to its robust nature.

Creativity in the Use of Sinhala and English in Advertisements in Sri Lanka: A Morphological Analysis

Sri Lanka has lived with the English language for more than 200 years. Although officially considered a link language, the phenomenal usage of English by the Sinhala-English bilingual has given rise to a mixed code with identifiable structural characteristics. The extensive use of the mixed language by the average Sri Lankan bilingual has resulted in it being used as a medium of communication by creative writers of bilingual advertisements in Sri Lanka. This study analyses the way in which English is used in bilingual advertisements in both print and electronic media in Sri Lanka. The theoretical framework for the study is based on Kachru’s analysis of the use of English by the bilingual, Muysken’s typology on code mixing theories in colonial settings and Myers-Scotton’s theory on the Matrix Language Framework Model. The study will look at a selection of Sinhala-English advertisements published in newspapers from 2015 to 2016. Only advertisements using both Sinhala and English are used for the analysis. To substantiate data collected from the newspapers, the study will select bilingual advertisements from television advertisements. The objective of the study is to analyze the mixed patterns used for creative purposes by advertisers. The results of the study will reveal the creativity used by the Sinhala –English bilingual and the morphological processes used by the creators of Sinhala-English bilingual advertisements to attract the masses.

Further Investigation of α+12C and α+16O Elastic Scattering

The current work aims to study the rainbow like-structure observed in the elastic scattering of alpha particles on both 12C and 16O nuclei. We reanalyzed the experimental elastic scattering angular distributions data for α+12C and α+16O nuclear systems at different energies using both optical model and double folding potential of different interaction models such as: CDM3Y1, DDM3Y1, CDM3Y6 and BDM3Y1. Potential created by BDM3Y1 interaction model has the shallowest depth which reflects the necessity to use higher renormalization factor (Nr). Both optical model and double folding potential of different interaction models fairly reproduce the experimental data.

Dynamic Active Earth Pressure on Flexible Cantilever Retaining Wall

Evaluation of dynamic earth pressure on retaining wall is a topic of primary importance. In present paper, dynamic active earth pressure and displacement of flexible cantilever retaining wall has been evaluated analytically using 2-DOF mass-spring-dashpot model by incorporating both wall and backfill properties. The effect of wall flexibility on dynamic active earth pressure and wall displacement are studied and presented in graphical form. The obtained results are then compared with the various conventional methods, experimental analysis and also with PLAXIS analysis. It is observed that the dynamic active earth pressure decreases with increase in the wall flexibility while wall displacement increases linearly with flexibility of the wall. The results obtained by proposed 2-DOF analytical model are found to be more realistic and economical.

Research of the Load Bearing Capacity of Inserts Embedded in CFRP under Different Loading Conditions

Continuous carbon fiber reinforced plastics (CFRP) exhibit a high application potential for lightweight structures due to their outstanding specific mechanical properties. Embedded metal elements, so-called inserts, can be used to join structural CFRP parts. Drilling of the components to be joined can be avoided using inserts. In consequence, no bearing stress is anticipated. This is a distinctive benefit of embedded inserts, since continuous CFRP have low shear and bearing strength. This paper aims at the investigation of the load bearing capacity after preinduced damages from impact tests and thermal-cycling. In addition, characterization of mechanical properties during dynamic high speed pull-out testing under different loading velocities was conducted. It has been shown that the load bearing capacity increases up to 100% for very high velocities (15 m/s) in comparison with quasi-static loading conditions (1.5 mm/min). Residual strength measurements identified the influence of thermal loading and preinduced mechanical damage. For both, the residual strength was evaluated afterwards by quasi-static pull-out tests. Taking into account the DIN EN 6038 a high decrease of force occurs at impact energy of 16 J with significant damage of the laminate. Lower impact energies of 6 J, 9 J, and 12 J do not decrease the measured residual strength, although the laminate is visibly damaged - distinguished by cracks on the rear side. To evaluate the influence of thermal loading, the specimens were placed in a climate chamber and were exposed to various numbers of temperature cycles. One cycle took 1.5 hours from -40 °C to +80 °C. It could be shown that already 10 temperature cycles decrease the load bearing capacity up to 20%. Further reduction of the residual strength with increasing number of thermal cycles was not observed. Thus, it implies that the maximum damage of the composite is already induced after 10 temperature cycles.

Environmental Decision Making Model for Assessing On-Site Performances of Building Subcontractors

Buildings cause a variety of loads on the environment due to activities performed at each stage of the building life cycle. Construction is the first stage that affects both the natural and built environments at different steps of the process, which can be defined as transportation of materials within the construction site, formation and preparation of materials on-site and the application of materials to realize the building subsystems. All of these steps require the use of technology, which varies based on the facilities that contractors and subcontractors have. Hence, environmental consequences of the construction process should be tackled by focusing on construction technology options used in every step of the process. This paper presents an environmental decision-making model for assessing on-site performances of subcontractors based on the construction technology options which they can supply. First, construction technologies, which constitute information, tools and methods, are classified. Then, environmental performance criteria are set forth related to resource consumption, ecosystem quality, and human health issues. Finally, the model is developed based on the relationships between the construction technology components and the environmental performance criteria. The Fuzzy Analytical Hierarchy Process (FAHP) method is used for weighting the environmental performance criteria according to environmental priorities of decision-maker(s), while the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) method is used for ranking on-site environmental performances of subcontractors using quantitative data related to the construction technology components. Thus, the model aims to provide an insight to decision-maker(s) about the environmental consequences of the construction process and to provide an opportunity to improve the overall environmental performance of construction sites.

Grief and Repenting: The Engaging Remembrance in Thomas Hardy’s ‘Poems of 1912-13’

Nostalgia, to some people, may seem foolhardy in a way. However, nostalgia is a completely and intensely private but social, collective emotion. It has continuing consequence and outgrowth for our lives as social actions. It leads people to hunt and explore remembrance of persons and places of our past in an effort to confer meaning of persons and places of present. In the ‘Poems of 1912-13’ Thomas Hardy, a British poet, composed a series of poems after the unexpected death of his long-disaffected wife, Emma. The series interprets the cognitive and emotional concussion of Emma’s death on Hardy, concerning his mind and real visit to the landscape in Cornwall, England. Both spaces perform the author’s innermost in thought to his late wife and to the landscape. They present an apparent counterpart of the poet and his afflicted conscience. After Emma had died, Hardy carried her recollections alive by roaming about in the real visit and whimsical land (space) they once had drifted and meandered. This paper highlights the nostalgias and feds that seem endlessly to crop up.

Multi-Objective Optimization Contingent on Subcarrier-Wise Beamforming for Multiuser MIMO-OFDM Interference Channels

We address the problem of interference over all the channels in multiuser MIMO-OFDM systems. This paper contributes three beamforming strategies designed for multiuser multiple-input and multiple-output by way of orthogonal frequency division multiplexing, in which the transmit and receive beamformers are acquired repetitious by secure-form stages. In the principal case, the transmit (TX) beamformers remain fixed then the receive (RX) beamformers are computed. This eradicates one interference span for every user by means of extruding the transmit beamformers into a null space of relevant channels. Formerly, by gratifying the orthogonality condition to exclude the residual interferences in RX beamformer for every user is done by maximizing the signal-to-noise ratio (SNR). The second case comprises mutually optimizing the TX and RX beamformers from controlled SNR maximization. The outcomes of first case is used here. The third case also includes combined optimization of TX-RX beamformers; however, uses the both controlled SNR and signal-to-interference-plus-noise ratio maximization (SINR). By the standardized channel model for IEEE 802.11n, the proposed simulation experiments offer rapid beamforming and enhanced error performance.