Semi-Automatic Artifact Rejection Procedure Based on Kurtosis, Renyi's Entropy and Independent Component Scalp Maps

Artifact rejection plays a key role in many signal processing applications. The artifacts are disturbance that can occur during the signal acquisition and that can alter the analysis of the signals themselves. Our aim is to automatically remove the artifacts, in particular from the Electroencephalographic (EEG) recordings. A technique for the automatic artifact rejection, based on the Independent Component Analysis (ICA) for the artifact extraction and on some high order statistics such as kurtosis and Shannon-s entropy, was proposed some years ago in literature. In this paper we try to enhance this technique proposing a new method based on the Renyi-s entropy. The performance of our method was tested and compared to the performance of the method in literature and the former proved to outperform the latter.

Fractal Dimension of Breast Cancer Cell Migration in a Wound Healing Assay

Migration in breast cancer cell wound healing assay had been studied using image fractal dimension analysis. The migration of MDA-MB-231 cells (highly motile) in a wound healing assay was captured using time-lapse phase contrast video microscopy and compared to MDA-MB-468 cell migration (moderately motile). The Higuchi fractal method was used to compute the fractal dimension of the image intensity fluctuation along a single pixel width region parallel to the wound. The near-wound region fractal dimension was found to decrease three times faster in the MDA-MB- 231 cells initially as compared to the less cancerous MDA-MB-468 cells. The inner region fractal dimension was found to be fairly constant for both cell types in time and suggests a wound influence range of about 15 cell layer. The box-counting fractal dimension method was also used to study region of interest (ROI). The MDAMB- 468 ROI area fractal dimension was found to decrease continuously up to 7 hours. The MDA-MB-231 ROI area fractal dimension was found to increase and is consistent with the behavior of a HGF-treated MDA-MB-231 wound healing assay posted in the public domain. A fractal dimension based capacity index has been formulated to quantify the invasiveness of the MDA-MB-231 cells in the perpendicular-to-wound direction. Our results suggest that image intensity fluctuation fractal dimension analysis can be used as a tool to quantify cell migration in terms of cancer severity and treatment responses.

Idiopathic Constipation can be Subdivided in Clinical Subtypes: Data Mining by Cluster Analysis on a Population based Study

The prevalence of non organic constipation differs from country to country and the reliability of the estimate rates is uncertain. Moreover, the clinical relevance of subdividing the heterogeneous functional constipation disorders into pre-defined subgroups is largely unknown.. Aim: to estimate the prevalence of constipation in a population-based sample and determine whether clinical subgroups can be identified. An age and gender stratified sample population from 5 Italian cities was evaluated using a previously validated questionnaire. Data mining by cluster analysis was used to determine constipation subgroups. Results: 1,500 complete interviews were obtained from 2,083 contacted households (72%). Self-reported constipation correlated poorly with symptombased constipation found in 496 subjects (33.1%). Cluster analysis identified four constipation subgroups which correlated to subgroups identified according to pre-defined symptom criteria. Significant differences in socio-demographics and lifestyle were observed among subgroups.

Rethinking Research for Genetically Modified (GM) Food

This paper suggests a rethinking of the existing research about Genetically Modified (GM) food. Since the first batch of GM food was commercialised in the UK market, GM food rapidly received and lost media attention in the UK. Disagreement on GM food policy between the US and the EU has also drawn scholarly attention to this issue. Much research has been carried out intending to understand people-s views about GM food and the shaping of these views. This paper was based on the data collected in twenty-nine semi-structured interviews, which were examined through Erving Goffman-s idea of self-presentation in interactions to suggest that the existing studies investigating “consumer attitudes" towards GM food have only considered the “front stage" in the dramaturgic metaphor. This paper suggests that the ways in which people choose to present themselves when participating these studies should be taken into account during the data analysis.

Analytical Solution for Free Vibration of Rectangular Kirchhoff Plate from Wave Approach

In this paper, an analytical approach for free vibration analysis of four edges simply supported rectangular Kirchhoff plates is presented. The method is based on wave approach. From wave standpoint vibration propagate, reflect and transmit in a structure. Firstly, the propagation and reflection matrices for plate with simply supported boundary condition are derived. Then, these matrices are combined to provide a concise and systematic approach to free vibration analysis of a simply supported rectangular Kirchhoff plate. Subsequently, the eigenvalue problem for free vibration of plates is formulated and the equation of plate natural frequencies is constructed. Finally, the effectiveness of the approach is shown by comparison of the results with existing classical solution.

Forming of Institutional Mechanism of Region's Innovative Development

The regional innovative competitiveness is an integrating characteristic of the innovative sphere of the region. It depends on a big variety of different parameters connected with all kinds of economic entities- activities. But management parameters shouldn't be irregular, so in order to avoid it, an institutional system should be formed. This system should carry out strategic management of factors having the greatest influence on the region's innovative development. This article is devoted to different aspects of organization of the region's development institutional mechanism, which is based on management of regional innovative competitiveness parameters. The base of the analysis is innovatively-active Russian regions which were compared according to the level of the innovative competitiveness. After that the most important parameters of successful innovative development of the region were revealed with the help of the correlation-regression analysis. The results of the research could be used for investigation of the region's innovative policy.

Faults Forecasting System

This paper presents Faults Forecasting System (FFS) that utilizes statistical forecasting techniques in analyzing process variables data in order to forecast faults occurrences. FFS is proposing new idea in detecting faults. Current techniques used in faults detection are based on analyzing the current status of the system variables in order to check if the current status is fault or not. FFS is using forecasting techniques to predict future timing for faults before it happens. Proposed model is applying subset modeling strategy and Bayesian approach in order to decrease dimensionality of the process variables and improve faults forecasting accuracy. A practical experiment, designed and implemented in Okayama University, Japan, is implemented, and the comparison shows that our proposed model is showing high forecasting accuracy and BEFORE-TIME.

Pushover Analysis of Short Structures

In this paper first, Two buildings have been modeled and then analyzed using nonlinear static analysis method under two different conditions in Nonlinear SAP 2000 software. In the first condition the interaction of soil adjacent to the walls of basement are ignored while in the second case this interaction have been modeled using Gap elements of nonlinear SAP2000 software. Finally, comparing the results of two models, the effects of soil-structure on period, target point displacement, internal forces, shape deformations and base shears have been studied. According to the results, this interaction has always increased the base shear of buildings, decreased the period of structure and target point displacement, and often decreased the internal forces and displacements.

Thermal Cracking Respone of Reinforced Concrete Beam to Gradient Temperature

In this paper are illustrated the principal aspects connected with the numerical evaluation of thermal stress induced by high gradient temperature in the concrete beam. The reinforced concrete beam has many advantages over steel beam, such as high resistance to high temperature, high resistance to thermal shock, Better resistance to fatigue and buckling, strong resistance against, fire, explosion, etc. The main drawback of the reinforced concrete beam is its poor resistance to tensile stresses. In order to investigate the thermal induced tensile stresses, a numerical model of a transient thermal analysis is presented for the evaluation of thermo-mechanical response of concrete beam to the high temperature, taking into account the temperature dependence of the thermo physical properties of the concrete like thermal conductivity and specific heat.

Adsorption Studies on the Removal of Pesticides(Carbofuran) using Activated Carbon from Rice Straw Agricultural Waste

In this study, we used a two-stage process and potassium hydroxide (KOH) to transform waste biomass (rice straw) into activated carbon and then evaluated the adsorption capacity of the waste for removing carbofuran from an aqueous solution. Activated carbon was fast and effective for the removal of carbofuran because of its high surface area. The native and carbofuran-loaded adsorbents were characterized by elemental analysis. Different adsorption parameters, such as the initial carbofuran concentration, contact time, temperature and pH for carbofuran adsorption, were studied using a batch system. This study demonstrates that rice straw can be very effective in the adsorption of carbofuran from bodies of water.

An Investigation into the Role of Market Beta in Asset Pricing: Evidence from the Romanian Stock Market

In this paper, we apply the FM methodology to the cross-section of Romanian-listed common stocks and investigate the explanatory power of market beta on the cross-section of commons stock returns from Bucharest Stock Exchange. Various assumptions are empirically tested, such us linearity, market efficiency, the “no systematic effect of non-beta risk" hypothesis or the positive expected risk-return trade-off hypothesis. We find that the Romanian stock market shows the same properties as the other emerging markets in terms of efficiency and significance of the linear riskreturn models. Our analysis included weekly returns from January 2002 until May 2010 and the portfolio formation, estimation and testing was performed in a rolling manner using 51 observations (one year) for each stage of the analysis.

A Utilitarian Approach to Modeling Information Flows in Social Networks

We propose a multi-agent based utilitarian approach to model and understand information flows in social networks that lead to Pareto optimal informational exchanges. We model the individual expected utility function of the agents to reflect the net value of information received. We show how this model, adapted from a theorem by Karl Borch dealing with an actuarial Risk Exchange concept in the Insurance industry, can be used for social network analysis. We develop a utilitarian framework that allows us to interpret Pareto optimal exchanges of value as potential information flows, while achieving a maximization of a sum of expected utilities of information of the group of agents. We examine some interesting conditions on the utility function under which the flows are optimal. We illustrate the promise of this new approach to attach economic value to information in networks with a synthetic example.

Periodic Control of a Wastewater Treatment Process to Improve Productivity

In this paper, periodic force operation of a wastewater treatment process has been studied for the improved process performance. A previously developed dynamic model for the process is used to conduct the performance analysis. The static version of the model was utilized first to determine the optimal productivity conditions for the process. Then, feed flow rate in terms of dilution rate i.e. (D) is transformed into sinusoidal function. Nonlinear model predictive control algorithm is utilized to regulate the amplitude and period of the sinusoidal function. The parameters of the feed cyclic functions are determined which resulted in improved productivity than the optimal productivity under steady state conditions. The improvement in productivity is found to be marginal and is satisfactory in substrate conversion compared to that of the optimal condition and to the steady state condition, which corresponds to the average value of the periodic function. Successful results were also obtained in the presence of modeling errors and external disturbances.

Experimental Estimation of Mixed-Mode Fracture Properties of Steel Weld

The modified Arcan fixture was used in order to investigate the mixed mode fracture properties of high strength steel butt weld through experimental and numerical analysis. The fixture consisted of a central section with "butterfly-shaped" specimen that had central crack. The specimens were under pure mode I (opening), pure mode II (shearing) and all in plane mixed mode loading angles starting from 0 to 90 degrees. The geometric calibration factors were calculated with the aid of finite element analysis for various loading mode and different crack length (0.45≤ a/w ≤0.55) and the critical fracture loads obtained experimentally. The critical fracture toughness (KIC & KIIC) estimated with experimental and numerical analysis under mixed mode loading conditions.

Performance Analysis of MT Evaluation Measures and Test Suites

Many measures have been proposed for machine translation evaluation (MTE) while little research has been done on the performance of MTE methods. This paper is an effort for MTE performance analysis. A general frame is proposed for the description of the MTE measure and the test suite, including whether the automatic measure is consistent with human evaluation, whether different results from various measures or test suites are consistent, whether the content of the test suite is suitable for performance evaluation, the degree of difficulty of the test suite and its influence on the MTE, the relationship of MTE result significance and the size of the test suite, etc. For a better clarification of the frame, several experiment results are analyzed relating human evaluation, BLEU evaluation, and typological MTE. A visualization method is introduced for better presentation of the results. The study aims for aid in construction of test suite and method selection in MTE practice.

An Identification Method of Geological Boundary Using Elastic Waves

This paper focuses on a technique for identifying the geological boundary of the ground strata in front of a tunnel excavation site using the first order adjoint method based on the optimal control theory. The geological boundary is defined as the boundary which is different layers of elastic modulus. At tunnel excavations, it is important to presume the ground situation ahead of the cutting face beforehand. Excavating into weak strata or fault fracture zones may cause extension of the construction work and human suffering. A theory for determining the geological boundary of the ground in a numerical manner is investigated, employing excavating blasts and its vibration waves as the observation references. According to the optimal control theory, the performance function described by the square sum of the residuals between computed and observed velocities is minimized. The boundary layer is determined by minimizing the performance function. The elastic analysis governed by the Navier equation is carried out, assuming the ground as an elastic body with linear viscous damping. To identify the boundary, the gradient of the performance function with respect to the geological boundary can be calculated using the adjoint equation. The weighed gradient method is effectively applied to the minimization algorithm. To solve the governing and adjoint equations, the Galerkin finite element method and the average acceleration method are employed for the spatial and temporal discretizations, respectively. Based on the method presented in this paper, the different boundary of three strata can be identified. For the numerical studies, the Suemune tunnel excavation site is employed. At first, the blasting force is identified in order to perform the accuracy improvement of analysis. We identify the geological boundary after the estimation of blasting force. With this identification procedure, the numerical analysis results which almost correspond with the observation data were provided.

Powerful Tool to Expand Business Intelligence: Text Mining

With the extensive inclusion of document, especially text, in the business systems, data mining does not cover the full scope of Business Intelligence. Data mining cannot deliver its impact on extracting useful details from the large collection of unstructured and semi-structured written materials based on natural languages. The most pressing issue is to draw the potential business intelligence from text. In order to gain competitive advantages for the business, it is necessary to develop the new powerful tool, text mining, to expand the scope of business intelligence. In this paper, we will work out the strong points of text mining in extracting business intelligence from huge amount of textual information sources within business systems. We will apply text mining to each stage of Business Intelligence systems to prove that text mining is the powerful tool to expand the scope of BI. After reviewing basic definitions and some related technologies, we will discuss the relationship and the benefits of these to text mining. Some examples and applications of text mining will also be given. The motivation behind is to develop new approach to effective and efficient textual information analysis. Thus we can expand the scope of Business Intelligence using the powerful tool, text mining.

The Grey Relational Analysis of the Influence Factors of Profit in Cartoon-s Character Merchandising Rights

This paper constructs a four factors theoretical model of Chinese small and medium enterprises based on the “cartoon characters- reputation - enterprise marketing and management capabilities – protection of the cartoon image - institutional environment" by literature research, case studies and investigation. The empirical study show that the greatest impact on current merchandising rights income is the institutional environment friendliness, followed by marketing and management capabilities, input of character image protection and Cartoon characters- reputation through the real-time grey relational analysis, and the greatest impact on post-merchandising rights profit is Cartoon characters reputation, followed by the institutional environment friendliness, then marketing and management ability and input of character image protection through the time-delay grey relational analysis.

Fixture Layout Optimization for Large Metal Sheets Using Genetic Algorithm

The geometric errors in the manufacturing process can be reduced by optimal positioning of the fixture elements in the fixture to make the workpiece stiff. We propose a new fixture layout optimization method N-3-2-1 for large metal sheets in this paper that combines the genetic algorithm and finite element analysis. The objective function in this method is to minimize the sum of the nodal deflection normal to the surface of the workpiece. Two different kinds of case studies are presented, and optimal position of the fixturing element is obtained for different cases.

Combining Molecular Statics with Heat Transfer Finite Difference Method for Analysis of Nanoscale Orthogonal Cutting of Single-Crystal Silicon Temperature Field

This paper uses quasi-steady molecular statics model and diamond tool to carry out simulation temperature rise of nanoscale orthogonal cutting single-crystal silicon. It further qualitatively analyzes temperature field of silicon workpiece without considering heat transfer and considering heat transfer. This paper supposes that the temperature rise of workpiece is mainly caused by two heat sources: plastic deformation heat and friction heat. Then, this paper develops a theoretical model about production of the plastic deformation heat and friction heat during nanoscale orthogonal cutting. After the increased temperature produced by these two heat sources are added up, the acquired total temperature rise at each atom of the workpiece is substituted in heat transfer finite difference equation to carry out heat transfer and calculates the temperature field in each step and makes related analysis.