Some Investigations on Higher Mathematics Scores for Chinese University Student

To investigate some relations between higher mathe¬matics scores in Chinese graduate student entrance examination and calculus (resp. linear algebra, probability statistics) scores in subject's completion examination of Chinese university, we select 20 students as a sample, take higher mathematics score as a decision attribute and take calculus score, linear algebra score, probability statistics score as condition attributes. In this paper, we are based on rough-set theory (Rough-set theory is a logic-mathematical method proposed by Z. Pawlak. In recent years, this theory has been widely implemented in the many fields of natural science and societal science.) to investigate importance of condition attributes with respective to decision attribute and strength of condition attributes supporting decision attribute. Results of this investigation will be helpful for university students to raise higher mathematics scores in Chinese graduate student entrance examination.

Math Curriculum Adaptation for Disadvantaged Students in an Inclusive Classroom

This study was a part of the three-year longitudinal research on setting up an math learning model for the disadvantaged students in Taiwan. A target 2nd grade class with 10 regular students and 6 disadvantaged students at a disadvantaged area in Taipei participated in this study. Two units of a market basal math textbook concerning fractions, three-dimensional figures, weight and capacity were adapted to enhance their math learning motivations, confidences and effects. The findings were (1) curriculum adaptation was effective on enhancing students- learning motivations, confidences and effects; (2) story-type problems and illustrations decreased difficulties on understanding math language for students from new immigrant families and students with special needs; (3) “concrete – semiconcrete – abstract" teaching strategies and hands-on activities were essential to raise students learning interests and effects; and (4) curriculum adaptation knowledge and skills needed to be included in the pre- and in-service teacher training programs.

Statistical Approach to Basis Function Truncation in Digital Interpolation Filters

In this paper an alternative analysis in the time domain is described and the results of the interpolation process are presented by means of functions that are based on the rule of conditional mathematical expectation and the covariance function. A comparison between the interpolation error caused by low order filters and the classic sinc(t) truncated function is also presented. When fewer samples are used, low-order filters have less error. If the number of samples increases, the sinc(t) type functions are a better alternative. Generally speaking there is an optimal filter for each input signal which depends on the filter length and covariance function of the signal. A novel scheme of work for adaptive interpolation filters is also presented.

On Convergence of Affine Thin Plate Bending Element

In the present paper the displacement-based nonconforming quadrilateral affine thin plate bending finite element ARPQ4 is presented, derived directly from non-conforming quadrilateral thin plate bending finite element RPQ4 proposed by Wanji and Cheung [19]. It is found, however, that element RPQ4 is only conditionally unisolvent. The new element is shown to be inherently unisolvent. This convenient property results in the element ARPQ4 being more robust and thus better suited for computations than its predecessor. The convergence is proved and the rate of convergence estimated. The mathematically rigorous proof of convergence presented in the paper is based on Stummel-s generalized patch test and the consideration of the element approximability condition, which are both necessary and sufficient for convergence.

A Novel Hopfield Neural Network for Perfect Calculation of Magnetic Resonance Spectroscopy

In this paper, an automatic determination algorithm for nuclear magnetic resonance (NMR) spectra of the metabolites in the living body by magnetic resonance spectroscopy (MRS) without human intervention or complicated calculations is presented. In such method, the problem of NMR spectrum determination is transformed into the determination of the parameters of a mathematical model of the NMR signal. To calculate these parameters efficiently, a new model called modified Hopfield neural network is designed. The main achievement of this paper over the work in literature [30] is that the speed of the modified Hopfield neural network is accelerated. This is done by applying cross correlation in the frequency domain between the input values and the input weights. The modified Hopfield neural network can accomplish complex dignals perfectly with out any additinal computation steps. This is a valuable advantage as NMR signals are complex-valued. In addition, a technique called “modified sequential extension of section (MSES)" that takes into account the damping rate of the NMR signal is developed to be faster than that presented in [30]. Simulation results show that the calculation precision of the spectrum improves when MSES is used along with the neural network. Furthermore, MSES is found to reduce the local minimum problem in Hopfield neural networks. Moreover, the performance of the proposed method is evaluated and there is no effect on the performance of calculations when using the modified Hopfield neural networks.

Design of a 5-Joint Mechanical Arm with User-Friendly Control Program

This paper describes the design concepts and implementation of a 5-Joint mechanical arm for a rescue robot named CEO Mission II. The multi-joint arm is a five degree of freedom mechanical arm with a four bar linkage, which can be stretched to 125 cm. long. It is controlled by a teleoperator via the user-friendly control and monitoring GUI program. With Inverse Kinematics principle, we developed the method to control the servo angles of all arm joints to get the desired tip position. By clicking the determined tip position or dragging the tip of the mechanical arm on the computer screen to the desired target point, the robot will compute and move its multi-joint arm to the pose as seen on the GUI screen. The angles of each joint are calculated and sent to all joint servos simultaneously in order to move the mechanical arm to the desired pose at once. The operator can also use a joystick to control the movement of this mechanical arm and the locomotion of the robot. Many sensors are installed at the tip of this mechanical arm for surveillance from the high level and getting the vital signs of victims easier and faster in the urban search and rescue tasks. It works very effectively and easy to control. This mechanical arm and its software were developed as a part of the CEO Mission II Rescue Robot that won the First Runner Up award and the Best Technique award from the Thailand Rescue Robot Championship 2006. It is a low cost, simple, but functioning 5-Jiont mechanical arm which is built from scratch, and controlled via wireless LAN 802.11b/g. This 5-Jiont mechanical arm hardware concept and its software can also be used as the basic mechatronics to many real applications.

Mathematical Correlation for Brake Thermal Efficiency and NOx Emission of CI Engine using Ester of Vegetable Oils

The aim of this study is to develop mathematical relationships for the performance parameter brake thermal efficiency (BTE) and emission parameter nitrogen oxides (NOx) for the various esters of vegetable oils used as CI engine fuel. The BTE is an important performance parameter defining the ability of engine to utilize the energy supplied and power developed similarly it is indication of efficiency of fuels used. The esters of cottonseed oil, soybean oil, jatropha oil and hingan oil are prepared using transesterification process and characterized for their physical and main fuel properties including viscosity, density, flash point and higher heating value using standard test methods. These esters are tried as CI engine fuel to analyze the performance and emission parameters in comparison to diesel. The results of the study indicate that esters as a fuel does not differ greatly with that of diesel in properties. The CI engine performance with esters as fuel is in line with the diesel where as the emission parameters are reduced with the use of esters. The correlation developed between BTE and brake power(BP), gross calorific value(CV), air-fuel ratio(A/F), heat carried away by cooling water(HCW). Another equation is developed between the NOx emission and CO, HC, smoke density (SD), exhaust gas temperature (EGT). The equations are verified by comparing the observed and calculated values which gives the coefficient of correlation of 0.99 and 0.96 for the BTE and NOx equations respectively.

Evaluation of New Product Development Projects using Artificial Intelligence and Fuzzy Logic

As a vital activity for companies, new product development (NPD) is also a very risky process due to the high uncertainty degree encountered at every development stage and the inevitable dependence on how previous steps are successfully accomplished. Hence, there is an apparent need to evaluate new product initiatives systematically and make accurate decisions under uncertainty. Another major concern is the time pressure to launch a significant number of new products to preserve and increase the competitive power of the company. In this work, we propose an integrated decision-making framework based on neural networks and fuzzy logic to make appropriate decisions and accelerate the evaluation process. We are especially interested in the two initial stages where new product ideas are selected (go/no go decision) and the implementation order of the corresponding projects are determined. We show that this two-staged intelligent approach allows practitioners to roughly and quickly separate good and bad product ideas by making use of previous experiences, and then, analyze a more shortened list rigorously.

Two Dimensional Simulation of Fluid Flow and Heat Transfer in the Transition Flow Regime using a Lattice Boltzmann Approach

The significant effects of the interactions between the system boundaries and the near wall molecules in miniaturized gaseous devices lead to the formation of the Knudsen layer in which the Navier-Stokes-Fourier (NSF) equations fail to predict the correct associated phenomena. In this paper, the well-known lattice Boltzmann method (LBM) is employed to simulate the fluid flow and heat transfer processes in rarefied gaseous micro media. Persuaded by the problematic deficiency of the LBM in capturing the Knudsen layer phenomena, present study tends to concentrate on the effective molecular mean free path concept the main essence of which is to compensate the incapability of this mesoscopic method in dealing with the momentum and energy transport within the above mentioned kinetic boundary layer. The results show qualitative and quantitative accuracy comparable to the solutions of the linearized Boltzmann equation or the DSMC data for the Knudsen numbers of O (1) .

Theoretical Investigations on Different Casing and Rotor Diameters Ratio to Optimize Shaft Output of a Vaned Type Air Turbine

This paper details a new concept of using compressed air as a potential zero pollution power source for motorbikes. In place of an internal combustion engine, the motorbike is equipped with an air turbine transforms the energy of the compressed air into shaft work. The mathematical modeling and performance evaluation of a small capacity compressed air driven vaned type novel air turbine is presented in this paper. The effect of isobaric admission and adiabatic expansion of high pressure air for different rotor diameters, casing diameters and ratio of rotor to casing diameters of the turbine have been considered and analyzed. It is concluded that the work output is found optimum for some typical values of rotor / casing diameter ratios. In this study, the maximum power works out to 3.825 kW (5.20 HP) for casing diameter of 200 mm and rotor to casing diameter ratio of 0.65 to 0.60 which is sufficient to run motorbike.

In Search of the Meaning of Entrepreneurship

The following study aims to outline, whether the perceptions of entrepreneurs about their entrepreneurial activities and the underlying meanings of their activities are universal or whether they vary systematically across cultures. In contrast to previous studies, the phenomenographical approach and the resulting findings of this study provide new insights into what constitutes entrepreneurship by drawing an inference from the perceptions of entrepreneurs in the United States and in Germany. Culture is shown to have an important impact on entrepreneurship, since the underlying meanings of entrepreneurship vary significantly among the two sample groups. Furthermore, the study sheds more light on the culturally contingent 'why' of entrepreneurship by looking at the internal motivations of individuals instead of exclusively focusing on character traits or external influences of the respective economic environments.

Definition in Law: Transgender Identities and Marriage

This paper looks at transgender identities and the law in the context of marriage. It particularly focuses on the role of language and definition in classifying transgendered individuals into a legal category. Two lines of cases in transgender jurisprudence are examined. The former cases decided the definition of 'man' and 'woman' on the basis of biological criteria while the latter cases held that biological factors should not be the sole criterion for defining a man or a woman. Three categories were found to classify transgender people, namely male, female and "monstrous". Since transgender people challenge the core gender distinction that the law stresses, they are often regarded as problematic and monstrous which caused them to be subjected to severe legal consequences. This paper discusses these issues by analyzing and comparing different cases in transgender jurisprudence as well as examining how these issues play out in contemporary Hong Kong.

Optimization of PEM Fuel Cell Biphasic Model

The optimal operation of proton exchange membrane fuel cell (PEMFC) requires good water management which is presented under two forms vapor and liquid. Moreover, fuel cells have to reach higher output require integration of some accessories which need electrical power. In order to analyze fuel cells operation and different species transport phenomena a biphasic mathematical model is presented by governing equations set. The numerical solution of these conservation equations is calculated by Matlab program. A multi-criteria optimization with weighting between two opposite objectives is used to determine the compromise solutions between maximum output and minimal stack size. The obtained results are in good agreement with available literature data.

Material Failure Process Simulation by Improve Finite Elements with Embedded Discontinuities

This paper shows the advantages of the material failure process simulation by improve finite elements with embedded discontinuities, using a new definition of traction vector, dependent on the discontinuity length and the angle. Particularly, two families of this kind of elements are compared: kinematically optimal symmetric and statically and kinematically optimal non-symmetric. The constitutive model to describe the behavior of the material in the symmetric formulation is a traction-displacement jump relationship equipped with softening after reaching the failure surface. To show the validity of this symmetric formulation, representative numerical examples illustrating the performance of the proposed formulation are presented. It is shown that the non-symmetric family may over or underestimate the energy required to create a discontinuity, as this effect is related with the total length of the discontinuity, fact that is not noticed when the discontinuity path is a straight line.

Principal Component Regression in Noninvasive Pineapple Soluble Solids Content Assessment Based On Shortwave Near Infrared Spectrum

The Principal component regression (PCR) is a combination of principal component analysis (PCA) and multiple linear regression (MLR). The objective of this paper is to revise the use of PCR in shortwave near infrared (SWNIR) (750-1000nm) spectral analysis. The idea of PCR was explained mathematically and implemented in the non-destructive assessment of the soluble solid content (SSC) of pineapple based on SWNIR spectral data. PCR achieved satisfactory results in this application with root mean squared error of calibration (RMSEC) of 0.7611 Brix°, coefficient of determination (R2) of 0.5865 and root mean squared error of crossvalidation (RMSECV) of 0.8323 Brix° with principal components (PCs) of 14.

Active Vibration Control of Flexible Beam using Differential Evolution Optimisation

This paper presents the development of an active vibration control using direct adaptive controller to suppress the vibration of a flexible beam system. The controller is realized based on linear parametric form. Differential evolution optimisation algorithm is used to optimize the controller using single objective function by minimizing the mean square error of the observed vibration signal. Furthermore, an alternative approach is developed to systematically search for the best controller model structure together with it parameter values. The performance of the control scheme is presented and analysed in both time and frequency domain. Simulation results demonstrate that the proposed scheme is able to suppress the unwanted vibration effectively.

Reduced Dynamic Time Warping for Handwriting Recognition Based on Multidimensional Time Series of a Novel Pen Device

The purpose of this paper is to present a Dynamic Time Warping technique which reduces significantly the data processing time and memory size of multi-dimensional time series sampled by the biometric smart pen device BiSP. The acquisition device is a novel ballpoint pen equipped with a diversity of sensors for monitoring the kinematics and dynamics of handwriting movement. The DTW algorithm has been applied for time series analysis of five different sensor channels providing pressure, acceleration and tilt data of the pen generated during handwriting on a paper pad. But the standard DTW has processing time and memory space problems which limit its practical use for online handwriting recognition. To face with this problem the DTW has been applied to the sum of the five sensor signals after an adequate down-sampling of the data. Preliminary results have shown that processing time and memory size could significantly be reduced without deterioration of performance in single character and word recognition. Further excellent accuracy in recognition was achieved which is mainly due to the reduced dynamic time warping RDTW technique and a novel pen device BiSP.

Modeling of a Novel Dual-Belt Continuously Variable Transmission for Automobiles

It is believed that continuously variable transmission (CVT) will dominate the automotive transmissions in the future. The most popular design is Van Doorne-s CVT with single metal pushing V-belt. However, it is only applicable to low power passenger cars because its major limitation is low torque capacity. Therefore, this research studies a novel dual-belt CVT system to overcome the limitation of traditional single-belt CVT, such that it can be applicable to the heavy-duty vehicles. This paper presents the mathematical model of the design and its experimental verification. Experimental and simulated results show that the model developed is valid and the proposed dual-belt CVT can really overcome the traditional limitation of single-belt Van Doorne-s CVT.

Mathematical Modeling of the Influence of Hydrothermal Processes in the Water Reservoir

In this paper presents the mathematical model of hydrothermal processes in thermal power plant with different wind direction scenarios in the water reservoir, which is solved by the Navier - Stokes and temperature equations for an incompressible fluid in a stratified medium. Numerical algorithm based on the method of splitting by physical parameters. Three dimensional Poisson equation is solved with Fourier method by combination of tridiagonal matrix method (Thomas algorithm).

Optimal Controller Design for Linear Magnetic Levitation Rail System

In many applications, magnetic suspension systems are required to operate over large variations in air gap. As a result, the nonlinearities inherent in most types of suspensions have a significant impact on performance. Specifically, it may be difficult to design a linear controller which gives satisfactory performance, stability, and disturbance rejection over a wide range of operating points. in this paper an optimal controller based on discontinuous mathematical model of the system for an electromagnetic suspension system which is applied in magnetic trains has been designed . Simulations show that the new controller can adapt well to the variance of suspension mass and gap, and keep its dynamic performance, thus it is superior to the classic controller.