Features of Soil Formation in the North of Western Siberia in Cryogenic Conditions

A large part of Russia is located in permafrost areas. These areas are widely used because there are concentrated valuable natural resources. Therefore to explore of cryosols it is important due to the significant increase of anthropogenic stress as well as the problem of global climate change. In the north of Western Siberia permafrost phenomena is widespread. Permafrost as a factor of soil formation and cryogenesis as a process have a great impact on the soil formation of these areas. Based on the research results of permafrost-affected soils tundra landscapes formed in the central part of the Tazovskiy Peninsula in cryogenic conditions, data were obtained which characterize the morphological features of soils. The specificity of soil cover distribution and manifestation of soil-forming processes within the study area are noted. Permafrost features such as frost cracking, cryoturbation, thixotropy, movement of humus are formed. The formation of these features is increased with the development of the territory. As a consequence, there is a change in the components of the environment and the destruction of the soil cover.

Influence of Fermentation Conditions on Humic Acids Production by Trichoderma viride Using an Oil Palm Empty Fruit Bunch as the Substrate

Humic acids (HA) were produced by a Trichoderma viride strain under submerged fermentation in a medium based on the oil palm empty fruit bunch (EFB) and the main variables of the process were optimized by using response surface methodology. A temperature of 40°C and concentrations of 50g/L EFB, 5.7g/L potato peptone and 0.11g/L (NH4)2SO4 were the optimum levels of the variables that maximize the HA production, within the physicochemical and biological limits of the process. The optimized conditions led to an experimental HA concentration of 428.4±17.5 mg/L, which validated the prediction from the statistical model of 412.0mg/L. This optimization increased about 7–fold the HA production previously reported in the literature. Additionally, the time profiles of HA production and fungal growth confirmed our previous findings that HA production preferably occurs during fungal sporulation. The present study demonstrated that T. viride successfully produced HA via the submerged fermentation of EFB and the process parameters were successfully optimized using a statistics-based response surface model. To the best of our knowledge, the present work is the first report on the optimization of HA production from EFB by a biotechnological process, whose feasibility was only pointed out in previous works.

Characterization of 3D-MRP for Analyzing of Brain Balancing Index (BBI) Pattern

This paper discusses on power spectral density (PSD) characteristics which are extracted from three-dimensional (3D) electroencephalogram (EEG) models. The EEG signal recording was conducted on 150 healthy subjects. Development of 3D EEG models involves pre-processing of raw EEG signals and construction of spectrogram images. Then, the values of maximum PSD were extracted as features from the model. These features are analyzed using mean relative power (MRP) and different mean relative power (DMRP) technique to observe the pattern among different brain balancing indexes. The results showed that by implementing these techniques, the pattern of brain balancing indexes can be clearly observed. Some patterns are indicates between index 1 to index 5 for left frontal (LF) and right frontal (RF).

LIDAR Obstacle Warning and Avoidance System for Unmanned Aircraft

The availability of powerful eye-safe laser sources and the recent advancements in electro-optical and mechanical beam-steering components have allowed laser-based Light Detection and Ranging (LIDAR) to become a promising technology for obstacle warning and avoidance in a variety of manned and unmanned aircraft applications. LIDAR outstanding angular resolution and accuracy characteristics are coupled to its good detection performance in a wide range of incidence angles and weather conditions, providing an ideal obstacle avoidance solution, which is especially attractive in low-level flying platforms such as helicopters and small-to-medium size Unmanned Aircraft (UA). The Laser Obstacle Avoidance Marconi (LOAM) system is one of such systems, which was jointly developed and tested by SELEX-ES and the Italian Air Force Research and Flight Test Centre. The system was originally conceived for military rotorcraft platforms and, in this paper, we briefly review the previous work and discuss in more details some of the key development activities required for integration of LOAM on UA platforms. The main hardware and software design features of this LOAM variant are presented, including a brief description of the system interfaces and sensor characteristics, together with the system performance models and data processing algorithms for obstacle detection, classification and avoidance. In particular, the paper focuses on the algorithm proposed for optimal avoidance trajectory generation in UA applications.

Simulation of Static Frequency Converter for Synchronous Machine Operation and Investigation of Shaft Voltage

This study is carried out to understand the effects of Static frequency converter (SFC) on large machine. SFC has a feature of four quadrant operations. By virtue of this it can be implemented to run a synchronous machine either as a motor or alternator. This dual mode operation helps a single machine to start & run as a motor and then it can be converted as an alternator whenever required. One such dual purpose machine is taken here for study. This machine is installed at a laboratory carrying out short circuit test on high power electrical equipment. SFC connected with this machine is broadly described in this paper. The same SFC has been modeled with the MATLAB/Simulink software. The data applied on this virtual model are the actual parameters from SFC and synchronous machine. After running the model, simulated machine voltage and current waveforms are validated with the real measurements. Processing of these waveforms is done through Fast Fourier Transformation (FFT) which reveals that the waveforms are not sinusoidal rather they contain number of harmonics. These harmonics are the major cause of generating shaft voltage. It is known that bearings of electrical machine are vulnerable to current flow through it due to shaft voltage. A general discussion on causes of shaft voltage in perspective with this machine is presented in this paper.

The Antibacterial Efficacy of Gold Nanoparticles Derived from Gomphrena celosioides and Prunus amygdalus (Almond) Leaves on Selected Bacterial Pathogens

Gold nanoparticles (AuNPs) have gained increasing interest in recent times. This is greatly due to their special features, which include unusual optical and electronic properties, high stability and biological compatibility, controllable morphology and size dispersion, and easy surface functionalization. In typical synthesis, AuNPs were produced by reduction of gold salt AuCl4 in an appropriate solvent. A stabilizing agent was added to prevent the particles from aggregating. The antibacterial activity of different sizes of gold nanoparticles was investigated against Staphylococcus aureus, Salmonella typhi and Pseudomonas pneumonia using the disk diffusion method in a Müeller–Hinton Agar. The Au-NPs were effective against all bacteria tested. That the Au-NPs were successfully synthesized in suspension and were used to study the antibacterial activity of the two medicinal plants against some bacterial pathogens suggests that Au-NPs can be employed as an effective bacteria inhibitor and may be an effective tool in medical field. The study clearly showed that the Au-NPs exhibiting inhibition towards the tested pathogenic bacteria in vitro could have the same effects in vivo and thus may be useful in the medical field if well researched into.

Understanding ICT Behaviors among Health Workers in Sub-Saharan Africa: A Cross-Sectional Study for Laboratory Persons in Uganda

A cross-sectional survey to ascertain the capacity of laboratory persons in using ICTs was conducted in 15 Ugandan districts (July-August 2013). A self-administered questionnaire served as data collection tool, interview guide and observation checklist. 69 questionnaires were filled, 12 interviews conducted, 45 HC observed. SPSS statistics 17.0 and SAS 9.2 software were used for entry and analyses. 69.35% of participants find it difficult to access a computer at work. Of the 30.65% who find it easy to access a computer at work, a significant 21.05% spend 0 hours on a computer daily. 60% of the participants cannot access internet at work. Of the 40% who have internet at work, a significant 20% lack email address but 20% weekly read emails weekly and 48% daily. It is viable/feasible to pilot informatics projects as strategies to build bridges develop skills for e-health landscape in laboratory services with a bigger financial muscle.

The Gasification of Acetone via Partial Oxidation in Supercritical Water

Organic solvents find various applications in many industrial sectors and laboratories as dilution solvents, dispersion solvents, cleaners and even lubricants. Millions of tons of spent organic solvents (SOS) are generated each year worldwide, prompting the need for more efficient, cleaner and safer methods for the treatment and resource recovery of SOS. As a result, acetone, selected as a model compound for SOS, was gasified in supercritical water to assess the feasibility of resource recovery of SOS by means of supercritical water processes. Experiments were conducted with an autoclave reactor. Gaseous product is mainly consists of H2, CO, CO2 and CH4. The effects of three major operating parameters, the reaction temperature, from 673 to 773K, the dosage of oxidizing agent, from 0.3 to 0.5 stoichiometric oxygen, and the concentration of acetone in the feed, 0.1 and 0.2M, on the product gas composition, yield and heating value were evaluated with the water density fixed at about 0.188g/ml.

Spectral Assessing of Topographic Effects on Seismic Behavior of Trapezoidal Hill

One of the most important issues about the structural damages caused by earthquake is the evaluating of the spectral response of the site on which the construction is built. This fact has demonstrated during many earlier earthquakes and many researchers’ reports have concerned with it. According to these reports, features of the site materials and geometry of the ground surface are considered the main factors. This study concentrates on the specific form of topographies like hills. Assessing of spectral responses of different points on the hills and beside demonstrates considerable differences between 1D and 2D methods of geotechnical analyses. A general trend of amplifications on the top of the hills and de-amplifications near the toe of the hills has been appeared within the acceleration, velocity and displacement response spectrums of horizontal motion. Evaluating of spectral responses of different sizes of the hills revealed that as much as the hill-size enlarges differences between spectral responses of 1D and 2D analyses transfers to longer range of periods and becomes wider.

Data Mining to Capture User-Experience: A Case Study in Notebook Product Appearance Design

In the era of rapidly increasing notebook market, consumer electronics manufacturers are facing a highly dynamic and competitive environment. In particular, the product appearance is the first part for user to distinguish the product from the product of other brands. Notebook product should differ in its appearance to engage users and contribute to the user experience (UX). The UX evaluates various product concepts to find the design for user needs; in addition, help the designer to further understand the product appearance preference of different market segment. However, few studies have been done for exploring the relationship between consumer background and the reaction of product appearance. This study aims to propose a data mining framework to capture the user’s information and the important relation between product appearance factors. The proposed framework consists of problem definition and structuring, data preparation, rules generation, and results evaluation and interpretation. An empirical study has been done in Taiwan that recruited 168 subjects from different background to experience the appearance performance of 11 different portable computers. The results assist the designers to develop product strategies based on the characteristics of consumers and the product concept that related to the UX, which help to launch the products to the right customers and increase the market shares. The results have shown the practical feasibility of the proposed framework.

Improved Stability Criteria for Neural Networks with Two Additive Time-Varying Delays

This paper studies the problem of stability criteria for neural networks with two additive time-varying delays.A new Lyapunov-Krasovskii function is constructed and some new delay dependent stability criterias are derived in the terms of linear matrix inequalities(LMI), zero equalities and reciprocally convex approach.The several stability criterion proposed in this paper is simpler and effective. Finally,numerical examples are provided to demonstrate the feasibility and effectiveness of our results.

Motion Planning and Posture Control of the General 3-Trailer System

This paper presents a set of artificial potential field functions that improves upon, in general, the motion planning and posture control, with theoretically guaranteed point and posture stabilities, convergence and collision avoidance properties of the general3-trailer system in a priori known environment. We basically design and inject two new concepts; ghost walls and the distance optimization technique (DOT) to strengthen point and posture stabilities, in the sense of Lyapunov, of our dynamical model. This new combination of techniques emerges as a convenient mechanism for obtaining feasible orientations at the target positions with an overall reduction in the complexity of the navigation laws. Simulations are provided to demonstrate the effectiveness of the controls laws.

Potential Field Functions for Motion Planning and Posture of the Standard 3-Trailer System

This paper presents a set of artificial potential field functions that improves upon, in general, the motion planning and posture control, with theoretically guaranteed point and posture stabilities, convergence and collision avoidance properties of 3-trailer systems in a priori known environment. We basically design and inject two new concepts; ghost walls and the distance optimization technique (DOT) to strengthen point and posture stabilities, in the sense of Lyapunov, of our dynamical model. This new combination of techniques emerges as a convenient mechanism for obtaining feasible orientations at the target positions with an overall reduction in the complexity of the navigation laws. The effectiveness of the proposed control laws were demonstrated via simulations of two traffic scenarios.

A Review on Stormwater Harvesting and Reuse

Australia is a country of some 7,700 million square kilometers with a population of about 22.6 million. At present water security is a major challenge for Australia. In some areas the use of water resources is approaching and in some parts it is exceeding the limits of sustainability. A focal point of proposed national water conservation programs is the recycling of both urban stormwater and treated wastewater. But till now it is not widely practiced in Australia, and particularly stormwater is neglected. In Australia, only 4% of stormwater and rainwater is recycled, whereas less than 1% of reclaimed wastewater is reused within urban areas. Therefore, accurately monitoring, assessing and predicting the availability, quality and use of this precious resource are required for better management. As stormwater is usually of better quality than untreated sewage or industrial discharge, it has better public acceptance for recycling and reuse, particularly for non-potable use such as irrigation, watering lawns, gardens, etc. Existing stormwater recycling practice is far behind of research and no robust technologies developed for this purpose. Therefore, there is a clear need for using modern technologies for assessing feasibility of stormwater harvesting and reuse. Numerical modeling has, in recent times, become a popular tool for doing this job. It includes complex hydrological and hydraulic processes of the study area. The hydrologic model computes stormwater quantity to design the system components, and the hydraulic model helps to route the flow through stormwater infrastructures. Nowadays water quality module is incorporated with these models. Integration of Geographic Information System (GIS) with these models provides extra advantage of managing spatial information. However for the overall management of a stormwater harvesting project, Decision Support System (DSS) plays an important role incorporating database with model and GIS for the proper management of temporal information. Additionally DSS includes evaluation tools and Graphical user interface. This research aims to critically review and discuss all the aspects of stormwater harvesting and reuse such as available guidelines of stormwater harvesting and reuse, public acceptance of water reuse, the scopes and recommendation for future studies. In addition to these, this paper identifies, understand and address the importance of modern technologies capable of proper management of stormwater harvesting and reuse.

Project and Module Based Teaching and Learning

This paper proposes a new teaching and learning approach-project and module based teaching and learning (PMBTL). The PMBTL approach incorporates the merits of project/problem based and module based learning methods, and overcomes the limitations of these methods. The correlation between teaching, learning, practice and assessment is emphasized in this approach, and new methods have been proposed accordingly. The distinct features of these new methods differentiate the PMBTL approach from conventional teaching approaches. Evaluation of this approach on practical teaching and learning activities demonstrates the effectiveness and stability of the approach in improving the performance and quality of teaching and learning. The approach proposed in this paper is also intuitive to the design of other teaching units. 

Comparative Analysis of DTC Based Switched Reluctance Motor Drive Using Torque Equation and FEA Models

Since torque ripple is the main cause of noise and vibrations, the performance of Switched Reluctance Motor (SRM) can be improved by minimizing its torque ripple using a novel control technique called Direct Torque Control (DTC). In DTC technique, torque is controlled directly through control of magnitude of the flux and change in speed of the stator flux vector. The flux and torque are maintained within set hysteresis bands. The DTC of SRM is analyzed by two methods. In one method, the actual torque is computed by conducting Finite Element Analysis (FEA) on the design specifications of the motor. In the other method, the torque is computed by Simplified Torque Equation. The variation of peak current, average current, torque ripple and speed settling time with Simplified Torque Equation model is compared with FEA based model.

Morphological Characteristics and Pollination Requirement in Red Pitaya (Hylocereus spp.)

This study explored the morphological characteristics and effects of pollination methods on fruit set and characteristics in 4 red pitaya (Hylocereus spp.) clones. The distinctive morphological recognition and classification among pitaya clones were confirmed by the stem, flower and fruit features. The fruit production season was indicated from the beginning of May to the end of August – the beginning of September with 6-7 flowering cycles per year. The floral stage took from 15-19 days and fruit duration spent 30–32 days. VN White, fully self-compatible, obtained high fruit set rates (80.0–90.5%) in all pollination treatments and the maximum fruit weight (402.6g) in hand self- and (403.4g) in open-pollination. Chaozhou 5 was partially self-compatible while Orejona and F11 were completely self-incompatible. Hand cross-pollination increased significantly fruit set (95.8; 88.4 and 90.2%) and fruit weight (374.2; 281.8 and 416.3g) in Chaozhou 5, Orejona and F11, respectively. TSS contents were not much influcenced by pollination methods.

An Integrated DEMATEL-QFD Model for Medical Supplier Selection

Supplier selection is considered as one of the most critical issues encountered by operations and purchasing managers to sharpen the company’s competitive advantage. In this paper, a novel fuzzy multi-criteria group decision making approach integrating quality function deployment (QFD) and decision making trial and evaluation laboratory (DEMATEL) method is proposed for supplier selection. The proposed methodology enables to consider the impacts of inner dependence among supplier assessment criteria. A house of quality (HOQ) which translates purchased product features into supplier assessment criteria is built using the weights obtained by DEMATEL approach to determine the desired levels of supplier assessment criteria. Supplier alternatives are ranked by a distance-based method.

Generation of Photo-Mosaic Images through Block Matching and Color Adjustment

Mosaic refers to a technique that makes image by gathering lots of small materials in various colors. This paper presents an automatic algorithm that makes the photo-mosaic image using photos. The algorithm is composed of 4 steps: partition and feature extraction, block matching, redundancy removal and color adjustment. The input image is partitioned in the small block to extract feature. Each block is matched to find similar photo in database by comparing similarity with Euclidean difference between blocks. The intensity of the block is adjusted to enhance the similarity of image by replacing the value of light and darkness with that of relevant block. Further, the quality of image is improved by minimizing the redundancy of tiles in the adjacent blocks. Experimental results support that the proposed algorithm is excellent in quantitative analysis and qualitative analysis.

Relay Node Selection Algorithm for Cooperative Communications in Wireless Networks

IEEE 802.11a/b/g standards support multiple transmission rates. Even though the use of multiple transmission rates increase the WLAN capacity, this feature leads to the performance anomaly problem. Cooperative communication was introduced to relieve the performance anomaly problem. Data packets are delivered to the destination much faster through a relay node with high rate than through direct transmission to the destination at low rate. In the legacy cooperative protocols, a source node chooses a relay node only based on the transmission rate. Therefore, they are not so feasible in multi-flow environments since they do not consider the effect of other flows. To alleviate the effect, we propose a new relay node selection algorithm based on the transmission rate and channel contention level. Performance evaluation is conducted using simulation, and shows that the proposed protocol significantly outperforms the previous protocol in terms of throughput and delay.