E-Learning Methodology Development using Modeling

Simulation and modeling computer programs are concerned with construction of models for analyzing different perspectives and possibilities in changing conditions environment. The paper presents theoretical justification and evaluation of qualitative e-learning development model in perspective of advancing modern technologies. There have been analyzed principles of qualitative e-learning in higher education, productivity of studying process using modern technologies, different kind of methods and future perspectives of e-learning in formal education. Theoretically grounded and practically tested model of developing e-learning methods using different technologies for different type of classroom, which can be used in professor-s decision making process to choose the most effective e-learning methods has been worked out.

On a New Nonlinear Sum-difference Inequality with Application

A new nonlinear sum-difference inequality in two variables which generalize some existing results and can be used as handy tools in the analysis of certain partial difference equation is discussed. An example to show boundedness of solutions of a difference value problem is also given.

Agent-Based Simulation of Simulating Anticipatory Systems – Classification

The present paper is oriented to classification and application of agent technique in simulation of anticipatory systems, namely those that use simulation models for the aid of anticipation. The main ideas root in the fact that the best way for description of computer simulation models is the technique of describing the simulated system itself (and the translation into the computer code is provided as automatic), and that the anticipation itself is often nested.

Effects of Upflow Liquid Velocity on Performance of Expanded Granular Sludge Bed (EGSB) System

The effects of upflow liquid velocity (ULV) on performance of expanded granular sludge bed (EGSB) system were investigated. The EGSB reactor, made from galvanized steel pipe 0.10 m diameter and 5 m height, had been used to treat piggery wastewater, after passing through acidification tank. It consisted of 39.3 l working volume in reaction zone and 122 l working volume in sedimentation zone, at the upper part. The reactor was seeded with anaerobically digested sludge and operated at the ULVs of 4, 8, 12 and 16 m/h, consecutively, corresponding to organic loading rates of 9.6 – 13.0 kg COD/ (m3.d). The average COD concentrations in the influent were 9,601 – 13,050 mg/l. The COD removal was not significantly different, i.e. 93.0% - 94.0%, except at ULV 12 m/h where SS in the influent was exceptionally high so that VSS washout had occurred, leading to low COD removal. The FCOD and VFA concentrations in the effluent of all experiments were not much different, indicating the same range of treatment performance. The biogas production decreased at higher ULV and ULV of 4 m/h is suggested as design criterion for EGSB system.

Investigating the Relation between Student Engagement and Attainment in a Flexible Learning Environment

The use of technology is increasingly adopted to support flexible learning in Higher Education institutions. The adoption of more sophisticated technologies offers a broad range of facilities for communication and resource sharing, thereby creating a flexible learning environment that facilitates and even encourages students not to physically attend classes. However this emerging trend seems to contradict class attendance requirements within universities, inevitably leading to a dilemma between amending traditional regulations and creating new policies for the higher education institutions. This study presents an investigation into student engagement in a technology enhanced/driven flexible environment along with its relationship to attainment. We propose an approach to modelling engagement from different perspectives in terms of indicators and then consider what impact these indicators have on student academic performance. We have carried out a case study on the relation between attendance and attainment in a flexible environment. Although our preliminary results show attendance is quantitatively correlated with successful student development and learning outcomes, our results also indicate there is a cohort that did not follow such a pattern. Nevertheless the preliminary results could provide an insight into pilot studies in the wider deployment of new technology to support flexible learning.

On Bounding Jayanti's Distributed Mutual Exclusion Algorithm

Jayanti-s algorithm is one of the best known abortable mutual exclusion algorithms. This work is an attempt to overcome an already known limitation of the algorithm while preserving its all important properties and elegance. The limitation is that the token number used to assign process identification number to new incoming processes is unbounded. We have used a suitably adapted alternative data structure, in order to completely eliminate the use of token number, in the algorithm.

Voice Over IP Technology Development in Offshore Industry: System Dynamics Approach

Nowadays, offshore's complicated facilities need their own communications requirements. Nevertheless, developing and real-world applications of new communications technology are faced with tremendous problems for new technology users, developers and implementers. Traditional systems engineering cannot be capable to develop a new technology effectively because it does not consider the dynamics of the process. This paper focuses on the design of a holistic model that represents the dynamics of new communication technology development within offshore industry. The model shows the behavior of technology development efforts. Furthermore, implementing this model, results in new and useful insights about the policy option analysis for developing a new communications technology in offshore industry.

Improvement of the Shortest Path Problem with Geodesic-Like Method

This paper proposes a method to improve the shortest path problem on a NURBS (Non-uniform rational basis spline) surfaces. It comes from an application of the theory in classic differential geometry on surfaces and can improve the distance problem not only on surfaces but in the Euclidean 3-space R3 .

Application of Particle Swarm Optimization Technique for an Optical Fiber Alignment System

In this paper, a new alignment method based on the particle swarm optimization (PSO) technique is presented. The PSO algorithm is used for locating the optimal coupling position with the highest optical power with three-degrees of freedom alignment. This algorithm gives an interesting results without a need to go thru the complex mathematical modeling of the alignment system. The proposed algorithm is validated considering practical tests considering the alignment of two Single Mode Fibers (SMF) and the alignment of SMF and PCF fibers.

Risk of Late Payment in the Malaysian Construction Industry

The purpose of this study is to identify the underlying causes of late payment from the contractors- perspective in the Malaysian construction industry and to recommend effective solutions to mitigate late payment problems. The target groups of respondents in this study were Grades G3, G5, G6 and G7 contractors with specialization in building works and civil engineering works registered with the Construction Industry Development Board (CIDB) in Malaysia. Results from this study were analyzed with Statistical Package for the Social Science (SPSS 15.0). From this study, it was found that respondents have highest ranked five significant variables out of a total of forty-one variables which can caused late payment problems: a) cash flow problems due to deficiencies in client-s management capacity (mean = 3.96); b) client-s ineffective utilization of funds (mean = 3.88); c) scarcity of capital to finance the project (mean = 3.81); d) clients failure to generate income from bank when sales of houses do not hit the targeted amount (mean=3.72); and e) poor cash flow because of lack of proper process implementation, delay in releasing of the retention monies to contractor and delay in the evaluation and certification of interim and final payment (mean = 3.66).

Educational Values of Virtual Reality: The Case of Spatial Ability

The use of Virtual Reality (VR) in schools and higher education is proliferating. Due to its interactive and animated features, it is regarded as a promising technology to increase students- spatial ability. Spatial ability is assumed to have a prominent role in science and engineering domains. However, research concerning individual differences such as spatial ability in the context of VR is still at its infancy. Moreover, empirical studies that focus on the features of VR to improve spatial ability are to date rare. Thus, this paper explores the possible educational values of VR in relation to spatial ability to call for more research concerning spatial ability in the context of VR based on studies in computerbased learning. It is believed that the incorporation of state-of-the-art VR technology for educational purposes should be justified by the enhanced benefits for the target learners.

Control and Navigation with Knowledge Bases

In this paper, we focus on the use of knowledge bases in two different application areas – control of systems with unknown or strongly nonlinear models (i.e. hardly controllable by the classical methods), and robot motion planning in eight directions. The first one deals with fuzzy logic and the paper presents approaches for setting and aggregating the rules of a knowledge base. Te second one is concentrated on a case-based reasoning strategy for finding the path in a planar scene with obstacles.

Usage-based Traffic Control for P2P Content Delivery

Recently, content delivery services have grown rapidly over the Internet. For ASPs (Application Service Provider) providing content delivery services, P2P architecture is beneficial to reduce outgoing traffic from content servers. On the other hand, ISPs are suffering from the increase in P2P traffic. The P2P traffic is unnecessarily redundant because the same content or the same fractions of content are transferred through an inter-ISP link several times. Subscriber ISPs have to pay a transit fee to upstream ISPs based on the volume of inter-ISP traffic. In order to solve such problems, several works have been done for the purpose of P2P traffic reduction. However, these existing works cannot control the traffic volume of a certain link. In order to solve such an ISP-s operational requirement, we propose a method to control traffic volume for a link within a preconfigured upper bound value. We evaluated that the proposed method works well by conducting a simulation on a 1,000-user scale. We confirm that the traffic volume could be controlled at a lower level than the upper bound for all evaluated conditions. Moreover, our method could control the traffic volume at 98.95% link usage against the target value.

Surface Phonon Polariton in InAlGaN Quaternary Alloys

III-nitride quaternary InxAlyGa1-x-yN alloys have experienced considerable interest as potential materials for optoelectronic applications. Despite these interesting applications and the extensive efforts to understand their fundamental properties, research on its fundamental surface property, i.e., surface phonon polariton (SPP) has not yet been reported. In fact, the SPP properties have been shown to provide application for some photonic devices. Hence, there is an absolute need for thorough studies on the SPP properties of this material. In this work, theoretical study on the SPP modes in InAlGaN quaternary alloys are reported. Attention is focus on the wurtzite (α-) structure InxAlyGa1-x-yN semi-crystal with different In composition, x ranging from 0 to 0.10 and constant Al composition, y = 0.06. The SPP modes are obtained through the theoretical simulation by means of anisotropy model. The characteristics of SP dispersion curves are discussed. Accessible results in terms of the experimental point of view are also given. Finally, the results revealed that the SPP mode of α-InxAlyGa1-x-yN semiconductors exhibits two-mode behavior.

Game based Learning to Enhance Cognitive and Physical Capabilities of Elderly People: Concepts and Requirements

The last decade has seen an early majority of people The last decade, the role of the of the information communication technologies has increased in improving the social and business life of people. Today, it is recognized that game could contribute to enhance virtual rehabilitation by better engaging patients. Our research study aims to develop a game based system enhancing cognitive and physical capabilities of elderly people. To this end, the project aims to develop a low cost hand held system based on existing game such as Wii, PSP, or Xbox. This paper discusses the concepts and requirements for developing such game for elderly people. Based on the requirement elicitation, we intend to develop a prototype related to sport and dance activities.

Modeling Low Voltage Power Line as a Data Communication Channel

Power line communications may be used as a data communication channel in public and indoor distribution networks so that it does not require the installing of new cables. Industrial low voltage distribution network may be utilized for data transfer required by the on-line condition monitoring of electric motors. This paper presents a pilot distribution network for modeling low voltage power line as data transfer channel. The signal attenuation in communication channels in the pilot environment is presented and the analysis is done by varying the corresponding parameters for the signal attenuation.

Exploiting Query Feedback for Efficient Query Routing in Unstructured Peer-to-peer Networks

Unstructured peer-to-peer networks are popular due to its robustness and scalability. Query schemes that are being used in unstructured peer-to-peer such as the flooding and interest-based shortcuts suffer various problems such as using large communication overhead long delay response. The use of routing indices has been a popular approach for peer-to-peer query routing. It helps the query routing processes to learn the routing based on the feedbacks collected. In an unstructured network where there is no global information available, efficient and low cost routing approach is needed for routing efficiency. In this paper, we propose a novel mechanism for query-feedback oriented routing indices to achieve routing efficiency in unstructured network at a minimal cost. The approach also applied information retrieval technique to make sure the content of the query is understandable and will make the routing process not just based to the query hits but also related to the query content. Experiments have shown that the proposed mechanism performs more efficient than flood-based routing.

Identification of Roadway Wavelengths Affecting the Dynamic Responses of Bridges due to Vehicular Loading

The bridge vibration due to traffic loading has been a subject of extensive research during the last decades. A number of these studies are concerned with the effects of the unevenness of roadways on the dynamic responses of highway bridges. The road unevenness is often described as a random process that constitutes of different wavelengths. Thus, the study focuses on examining the effects of the random description of roadways on the dynamic response and its variance. A new setting of variance based sensitivity analysis is proposed and used to identify and quantify the contributions of the roadway-s wavelengths to the variance of the dynamic response. Furthermore, the effect of the vehicle-s speed on the dynamic response is studied.

Efficient Hardware Implementation of an Elliptic Curve Cryptographic Processor Over GF (2 163)

A new and highly efficient architecture for elliptic curve scalar point multiplication which is optimized for a binary field recommended by NIST and is well-suited for elliptic curve cryptographic (ECC) applications is presented. To achieve the maximum architectural and timing improvements we have reorganized and reordered the critical path of the Lopez-Dahab scalar point multiplication architecture such that logic structures are implemented in parallel and operations in the critical path are diverted to noncritical paths. With G=41, the proposed design is capable of performing a field multiplication over the extension field with degree 163 in 11.92 s with the maximum achievable frequency of 251 MHz on Xilinx Virtex-4 (XC4VLX200) while 22% of the chip area is occupied, where G is the digit size of the underlying digit-serial finite field multiplier.

Biosignal Measurement using Personal Area Network based on Human Body Communication

In this study, we introduced a communication system where human body was used as medium through which data were transferred. Multiple biosignal sensing units were attached to a subject and wireless personal area network was formed. Data of the sensing units were shared among them. We used wideband pulse communication that was simple, low-power consuming and high data rated. Each unit functioned as independent communication device or node. A method of channel search and communication among the modes was developed. A protocol of carrier sense multiple access/collision detect was implemented in order to avoid data collision or interferences. Biosignal sensing units should be located at different locations due to the nature of biosignal origin. Our research provided a flexibility of collecting data without using electrical wires. More non-constrained measurement was accomplished which was more suitable for u-Health monitoring.