Design of Service-Oriented Pervasive System for Urban Computing in Cali Zoo (OpenZoo)

The increasing popularity of wireless technologies and mobile computing devices has enabled new application areas and research. One of these new areas is pervasive systems in urban environments, because urban environments are characterized by high concentration of these technologies and devices. In this paper we will show the process of pervasive system design in urban environments, using as use case a local zoo in Cali, Colombia. Based on an ethnographic studio, we present the design of a pervasive system for urban computing based on service oriented architecture to controlled environment of Cali Zoo. In this paper, the reader will find a methodological approach for the design of similar systems, using data collection methods, conceptual frameworks for urban environments and considerations of analysis and design of service oriented systems.

Design and Simulation of Air-Fuel Ratio Control System for Distributorless CNG Engine

This paper puts forward one kind of air-fuel ratio control method with PI controller. With the help of MATLAB/SIMULINK software, the mathematical model of air-fuel ratio control system for distributorless CNG engine is constructed. The objective is to maintain cylinder-to-cylinder air-fuel ratio at a prescribed set point, determined primarily by the state of the Three- Way-Catalyst (TWC), so that the pollutants in the exhaust are removed with the highest efficiency. The concurrent control of airfuel under transient conditions could be implemented by Proportional and Integral (PI) controller. The simulation result indicates that the control methods can easily eliminate the air/fuel maldistribution and maintain the air/fuel ratio at the stochiometry within minimum engine events.

Packet Losses Interpretation in Mobile Internet

The mobile users with Laptops need to have an efficient access to i.e. their home personal data or to the Internet from any place in the world, regardless of their location or point of attachment, especially while roaming outside the home subnet. An efficient interpretation of packet losses problem that is encountered from this roaming is to the centric of all aspects in this work, to be over-highlighted. The main previous works, such as BER-systems, Amigos, and ns-2 implementation that are considered to be in conjunction with that problem under study are reviewed and discussed. Their drawbacks and limitations, of stopping only at monitoring, and not to provide an actual solution for eliminating or even restricting these losses, are mentioned. Besides that, the framework around which we built a Triple-R sequence as a costeffective solution to eliminate the packet losses and bridge the gap between subnets, an area that until now has been largely neglected, is presented. The results show that, in addition to the high bit error rate of wireless mobile networks, mainly the low efficiency of mobile-IP registration procedure is a direct cause of these packet losses. Furthermore, the output of packet losses interpretation resulted an illustrated triangle of the registration process. This triangle should be further researched and analyzed in our future work.

Pattern Classification of Back-Propagation Algorithm Using Exclusive Connecting Network

The objective of this paper is to a design of pattern classification model based on the back-propagation (BP) algorithm for decision support system. Standard BP model has done full connection of each node in the layers from input to output layers. Therefore, it takes a lot of computing time and iteration computing for good performance and less accepted error rate when we are doing some pattern generation or training the network. However, this model is using exclusive connection in between hidden layer nodes and output nodes. The advantage of this model is less number of iteration and better performance compare with standard back-propagation model. We simulated some cases of classification data and different setting of network factors (e.g. hidden layer number and nodes, number of classification and iteration). During our simulation, we found that most of simulations cases were satisfied by BP based using exclusive connection network model compared to standard BP. We expect that this algorithm can be available to identification of user face, analysis of data, mapping data in between environment data and information.

MIM: A Species Independent Approach for Classifying Coding and Non-Coding DNA Sequences in Bacterial and Archaeal Genomes

A number of competing methodologies have been developed to identify genes and classify DNA sequences into coding and non-coding sequences. This classification process is fundamental in gene finding and gene annotation tools and is one of the most challenging tasks in bioinformatics and computational biology. An information theory measure based on mutual information has shown good accuracy in classifying DNA sequences into coding and noncoding. In this paper we describe a species independent iterative approach that distinguishes coding from non-coding sequences using the mutual information measure (MIM). A set of sixty prokaryotes is used to extract universal training data. To facilitate comparisons with the published results of other researchers, a test set of 51 bacterial and archaeal genomes was used to evaluate MIM. These results demonstrate that MIM produces superior results while remaining species independent.

A Model to Determine Atmospheric Stability and its Correlation with CO Concentration

Atmospheric stability plays the most important role in the transport and dispersion of air pollutants. Different methods are used for stability determination with varying degrees of complexity. Most of these methods are based on the relative magnitude of convective and mechanical turbulence in atmospheric motions. Richardson number, Monin-Obukhov length, Pasquill-Gifford stability classification and Pasquill–Turner stability classification, are the most common parameters and methods. The Pasquill–Turner Method (PTM), which is employed in this study, makes use of observations of wind speed, insolation and the time of day to classify atmospheric stability with distinguishable indices. In this study, a model is presented to determination of atmospheric stability conditions using PTM. As a case study, meteorological data of Mehrabad station in Tehran from 2000 to 2005 is applied to model. Here, three different categories are considered to deduce the pattern of stability conditions. First, the total pattern of stability classification is obtained and results show that atmosphere is 38.77%, 27.26%, 33.97%, at stable, neutral and unstable condition, respectively. It is also observed that days are mostly unstable (66.50%) while nights are mostly stable (72.55%). Second, monthly and seasonal patterns are derived and results indicate that relative frequency of stable conditions decrease during January to June and increase during June to December, while results for unstable conditions are exactly in opposite manner. Autumn is the most stable season with relative frequency of 50.69% for stable condition, whilst, it is 42.79%, 34.38% and 27.08% for winter, summer and spring, respectively. Hourly stability pattern is the third category that points out that unstable condition is dominant from approximately 03-15 GTM and 04-12 GTM for warm and cold seasons, respectively. Finally, correlation between atmospheric stability and CO concentration is achieved.

Digital Image Encryption Scheme using Chaotic Sequences with a Nonlinear Function

In this study, a system of encryption based on chaotic sequences is described. The system is used for encrypting digital image data for the purpose of secure image transmission. An image secure communication scheme based on Logistic map chaotic sequences with a nonlinear function is proposed in this paper. Encryption and decryption keys are obtained by one-dimensional Logistic map that generates secret key for the input of the nonlinear function. Receiver can recover the information using the received signal and identical key sequences through the inverse system technique. The results of computer simulations indicate that the transmitted source image can be correctly and reliably recovered by using proposed scheme even under the noisy channel. The performance of the system will be discussed through evaluating the quality of recovered image with and without channel noise.

Photo Mosaic Smartphone Application in Client-Server Based Large-Scale Image Databases

In this paper we present a photo mosaic smartphone application in client-server based large-scale image databases. Photo mosaic is not a new concept, but there are very few smartphone applications especially for a huge number of images in the client-server environment. To support large-scale image databases, we first propose an overall framework working as a client-server model. We then present a concept of image-PAA features to efficiently handle a huge number of images and discuss its lower bounding property. We also present a best-match algorithm that exploits the lower bounding property of image-PAA. We finally implement an efficient Android-based application and demonstrate its feasibility.

Hybridized Technique to Analyze Workstress Related Data via the StressCafé

This paper presents anapproach of hybridizing two or more artificial intelligence (AI) techniques which arebeing used to fuzzify the workstress level ranking and categorize the rating accordingly. The use of two or more techniques (hybrid approach) has been considered in this case, as combining different techniques may lead to neutralizing each other-s weaknesses generating a superior hybrid solution. Recent researches have shown that there is a need for a more valid and reliable tools, for assessing work stress. Thus artificial intelligence techniques have been applied in this instance to provide a solution to a psychological application. An overview about the novel and autonomous interactive model for analysing work-stress that has been developedusing multi-agent systems is also presented in this paper. The establishment of the intelligent multi-agent decision analyser (IMADA) using hybridized technique of neural networks and fuzzy logic within the multi-agent based framework is also described.

A Study on Creation of Human-Based Co-Design Service Platform

With the approaching of digital era, various interactive service platforms and systems support human beings- needs in lives by different contents and measures. Design strategies have gradually turned from function-based to user-oriented, and are often customized. In other words, how designers include users- value reaction in creation becomes the goal. Creative design service of interior design requires positive interaction and communication to allow users to obtain full design information, recognize the style and process of personal needs, develop creative service design, lower communication time and cost and satisfy users- sense of achievement. Thus, by constructing a co-design method, based on the communication between interior designers and users, this study recognizes users- real needs and provides the measure of co-design for designers and users.

Curriculum of Ethical Education in Slovakia

Ethical Education is a compulsorily optional subject in primary and secondary schools. The Ethical Education objective is the education of a personality with one´s own identity, with interiorized ethical standards, with mature moral judgement and therefore with the behaviour determined by one´s own beliefs; with a positive attitude to himself/herself and other people and that is why he/she is able to cooperate and to initiate cooperation. In the paper we describe the contents and the principles of Ethical education. We also shows that Ethical education is subject supported primary socialpathological prevention and education to citizenship. In this context we try to show that ethical education contributes to the education of good people who are aware of the necessity to respect social norms and are able to assume responsibility for their own behaviour in any situation at present and in the future.

Generic Workload Management System Using Condor-Based Pilot Factory in PanDA Framework

In the current Grid environment, efficient workload management presents a significant challenge, for which there are exorbitant de facto standards encompassing resource discovery, brokerage, and data transfer, among others. In addition, the real-time resource status, essential for an optimal resource allocation strategy, is often not readily accessible. To address these issues and provide a cleaner abstraction of the Grid with the potential of generalizing into arbitrary resource-sharing environment, this paper proposes a new Condor-based pilot mechanism applied in the PanDA architecture, PanDA-PF WMS, with the goal of providing a more generic yet efficient resource allocating strategy. In this architecture, the PanDA server primarily acts as a repository of user jobs, responding to pilot requests from distributed, remote resources. Scheduling decisions are subsequently made according to the real-time resource information reported by pilots. Pilot Factory is a Condor-inspired solution for a scalable pilot dissemination and effectively functions as a resource provisioning mechanism through which the user-job server, PanDA, reaches out to the candidate resources only on demand.

A Study of Classification Models to Predict Drill-Bit Breakage Using Degradation Signals

Cutting tools are widely used in manufacturing processes and drilling is the most commonly used machining process. Although drill-bits used in drilling may not be expensive, their breakage can cause damage to expensive work piece being drilled and at the same time has major impact on productivity. Predicting drill-bit breakage, therefore, is important in reducing cost and improving productivity. This study uses twenty features extracted from two degradation signals viz., thrust force and torque. The methodology used involves developing and comparing decision tree, random forest, and multinomial logistic regression models for classifying and predicting drill-bit breakage using degradation signals.

Environmental Efficiency of Electric Power Industry of the United States: A Data Envelopment Analysis Approach

Importance of environmental efficiency of electric power industry stems from high demand for energy combined with global warming concerns. It is especially essential for the world largest economies like that of the United States. The paper introduces a Data Envelopment Analysis (DEA) model of environmental efficiency using indicators of fossil fuels utilization, emissions rate, and electric power losses. Using DEA is advantageous in this situation over other approaches due to its nonparametric nature. The paper analyzes data for the period of 1990 - 2006 by comparing actual yearly levels in each dimension with the best values of partial indicators for the period. As positive factors of efficiency, tendency to the decline in emissions rates starting 2000, and in electric power losses starting 2004 may be mentioned together with increasing trend of fuel utilization starting 1999. As a result, dynamics of environmental efficiency is positive starting 2002. The main concern is the decline in fossil fuels utilization in 2006. This negative change should be reversed to comply with ecological and economic requirements.

Optimal Water Allocation: Sustainable Management of Dam Reservoir

Scarcity of water resources and huge costs of establishing new hydraulic installations necessitate optimal exploitation from existing reservoirs. Sustainable management and efficient exploitation from existing finite water resources are important factors in water resource management, particularly in the periods of water insufficiency and in dry regions, and on account of competitive allocations in the view of exploitation management. This study aims to minimize reservoir water release from a determined rate of demand. A numerical model for water optimal exploitation has been developed using GAMS introduced by the World Bank and applied to the case of Meijaran dam, northern Iran. The results indicate that this model can optimize the function of reservoir exploitation while required water for lower parts of the region will be supplied. Further, allocating optimal water from reservoir, the optimal rate of water allocated to any group of the users were specified to increase benefits in curve dam exploitation.

Analytical Model of Connection Establishment Duration Calculation in Wireless Networks

It is important to provide possibility of so called “handover" for the mobile subscriber from GSM network to Wi-Fi network and back. To solve specified problem it is necessary to estimate connection time between base station and wireless access point. Difficulty to estimate this parameter is that it doesn-t described in specifications of the standard and, hence, no recommended value is given. In this paper, the analytical model is presented that allows the estimating connection time between base station and IEEE 802.11 access point.

Pseudo Last Useful Instant Queuing Strategy for Handovers in Low Earth Orbit Mobile Satellite Networks

This paper presents an alternative strategy of queuing handover called Pseudo Last Useful Instant PLUI scheme for Low Earth Orbit Mobile Satellite Systems LEO MSSs. The PLUI scheme uses the same approach as the Last Useful Instant LUI scheme previously proposed in literature, with less complex implementation. Simulation tests were carried out using Dynamic Channel Allocation DCA in order to evaluate the performance of this scheme and also an analytical approach has been presented to allow the performance evaluation of Fixed Channel Allocation FCA, with different handover queuing disciplines. The results show that performances achieved by the proposed strategy are close to those achieved using the LUI scheme.

Low Computational Image Compression Scheme based on Absolute Moment Block Truncation Coding

In this paper we have proposed three and two stage still gray scale image compressor based on BTC. In our schemes, we have employed a combination of four techniques to reduce the bit rate. They are quad tree segmentation, bit plane omission, bit plane coding using 32 visual patterns and interpolative bit plane coding. The experimental results show that the proposed schemes achieve an average bit rate of 0.46 bits per pixel (bpp) for standard gray scale images with an average PSNR value of 30.25, which is better than the results from the exiting similar methods based on BTC.

Widening Students Perspective: Empowering Them with Systems Methodologies

Benefits to the organisation are just as important as technical ability when it comes to software success. The challenge is to provide industry with professionals who understand this. In other words: How to teach computer engineering students to look beyond technology, and at the benefits of software to organizations? This paper reports on the conceptual design of a section of the computer networks module aimed to sensitize the students to the organisational context. Checkland focuses on different worldviews represented by various role players in the organisation. He developed the Soft Systems Methodology that guides purposeful action in organisations, while incorporating different worldviews in the modeling process. If we can sensitize students to these methods, they are likely to appreciate the wider context of application of system software. This paper will provide literature on these concepts as well as detail on how the students will be guided to adopt these concepts.

Evolutionary Decision Trees and Software Metrics for Module Defects Identification

Software metric is a measure of some property of a piece of software or its specification. The aim of this paper is to present an application of evolutionary decision trees in software engineering in order to classify the software modules that have or have not one or more reported defects. For this some metrics are used for detecting the class of modules with defects or without defects.