Effect of Equal Channel Angular Pressing Process on Impact Property of Pure Copper

Ultrafine grained (UFG) and nanostructured (NS) materials have experienced a rapid development during the last decade and made profound impact on every field of materials science and engineering. The present work has been undertaken to develop ultrafine grained pure copper by severe plastic deformation method and to examine the impact property by different characterizing tools. For this aim, equal channel angular pressing die with the channel angle, outer corner angle and channel diameter of 90°, 17° and 20mm had been designed and manufactured. Commercial pure copper billets were ECAPed up to four passes by route BC at the ambient temperature. The results indicated that there is a great improvement at the hardness measurement, yield strength and ultimate tensile strength after ECAP process. It is found that the magnitudes of HV reach 136HV from 52HV after the final pass. Also, about 285% and 125% enhancement at the YS and UTS values have been obtained after the fourth pass as compared to the as-received conditions, respectively. On the other hand, the elongation to failure and impact energy have been reduced by imposing ECAP process and pass numbers. It is needed to say that about 56% reduction in the impact energy have been attained for the samples as contrasted to annealed specimens. 

Solving Definition and Relation Problems in English Navigation Terminology

Because of the increasing multidisciplinarity and multilinguality, communication problems in different technical fields grow more and more. Therefore, each technical field has its own specific language, terminology which is characterized by the different definition of terms. In addition to definition problems, there are also relation problems between terms. Among these problems of relation, there are the synonymy, antonymy, hypernymy/hyponymy, ambiguity, risk of confusion and translation problems etc. Thus, the terminology management system iglos of the Institute for Traffic Safety and Automation Engineering of the Technische Universität Braunschweig has the target to solve these problems by a methodological standardisation of term definitions with the aid of the iglos sign model and iglos relation types. The focus of this paper should be on solving definition and relation problems between terms in English navigation terminology.

Chemical Amelioration of Expansive Soils

Expansive soils swell when they absorb water and shrink when water evaporates from them. Hence, lightly loaded civil engineering structures founded in these soils are subjected to severe distress. Therefore, there is a need to ameliorate or improve these swelling soils through some innovative methods. This paper discusses chemical stabilisation of expansive soils, a technique in which chemical reagents such as lime and calcium chloride are added to expansive soils to reduce the volumetric changes occurring in expansive soils and to improve their engineering behaviour.

Fixed Points of Contractive-Like Operators by a Faster Iterative Process

In this paper, we prove a strong convergence result using a recently introduced iterative process with contractive-like operators. This improves andgeneralizes corresponding results in the literature in two ways: iterativeprocess is faster, operators are more general. At the end, we indicatethat the results can also be proved with the iterative process witherror terms.

An Approach to Manage and Evaluate Asset Performance

Modern engineering assets are complex and very high in value. They are expected to function for years to come, with ability to handle the change in technology and ageing modification. The aging of an engineering asset and continues increase of vendors and contractors numbers forces the asset operation management (or Owner) to design an asset system which can capture these changes. Furthermore, an accurate performance measurement and risk evaluation processes are highly needed. Therefore, this paper explores the nature of the asset management system performance evaluation for an engineering asset based on the System Support Engineering (SSE) principles. The research work explores the asset support system from a range of perspectives, interviewing managers from across a refinery organization. The factors contributing to complexity of an asset management system are described in context which clusters them into several key areas. It is proposed that SSE framework may then be used as a tool for analysis and management of asset. The paper will conclude with discussion of potential application of the framework and opportunities for future research.

A Concept of Successful Collaborative Design towards Sustainability of Project Development

Development in construction industry is leading to involve complexities in engineering systems; whereas it also required to its sustainability towards social, environmental, and economical aspects. Experts with requisite background and expertise are involved in order to integrate knowledge in achieving whole criteria through design process. Collaborative design is needed in order to attain optimum design through shared solution and goal from experts. This study is conducted to explore issues and approaches development of collaborative design research in construction and its influence to sustainability of the development. Literature review method is used in order to conceptually figure future research direction of collaborative design research. This research is a part of beginning process in doctoral research program, and will be used to support dissertation’s conceptual definition.

An Evaluation of TIG Welding Parametric Influence on Tensile Strength of 5083 Aluminium Alloy

Tungsten Inert Gas (TIG) welding is a high quality welding process used to weld the thin metals and their alloy. 5083 Aluminium alloys play an important role in engineering and metallurgy field because of excellent corrosion properties, ease of fabrication and high specific strength coupled with best combination of toughness and formability. TIG welding technique is one of the precise and fastest processes used in aerospace, ship and marine industries. TIG welding process is used to analyze the data and evaluate the influence of input parameters on tensile strength of 5083 Al-alloy specimens with dimensions of 100mm long x 15mm wide x 5mm thick. Welding current (I), gas flow rate (G) and welding speed (S) are the input parameters which effect tensile strength of 5083 Al-alloy welded joints. As welding speed increased, tensile strength increases first till optimum value and after that both decreases by increasing welding speed further. Results of the study show that maximum tensile strength of 129 MPa of weld joint are obtained at welding current of 240 Amps, gas flow rate of 7 Lt/min and welding speed of 98 mm/min. These values are the optimum values of input parameters which help to produce efficient weld joint that have good mechanical properties as a tensile strength.

Design of PI and Fuzzy Controller for High-Efficiency and Tightly Regulated Full Bridge DC-DC Converter

The controller is used to improve the dynamic performance of DC-DC converter by achieving a robust output voltage against load disturbances. This paper presents the performance of PI and Fuzzy controller for a phase- shifted zero-voltage switched full-bridge PWM (ZVS FB- PWM) converters with a closed loop control. The proposed converter is regulated with minimum overshoot and good stability. In this paper phase-shift control method is used as an effective tool to reduce switching losses and duty cycle losses. A 1kW/100KHz dc/dc converter is simulated and analyzed using MATLAB. The circuit is simulated for static and dynamic load (DC motor). It has been observed that performance of converter with fuzzy controller is better than that of PI controller. An efficiency comparison of the converter with a reported topology has also been carried out.

The Automated Selective Acquisition System

To support design process for launching the product on time, reverse engineering (RE) process has been introduced for quickly generating 3D CAD model from its physical object. The accuracy of the 3D CAD model depends upon the data acquisition technique selected, contact or non-contact methods. In order to reduce times used for acquiring surface and eliminating noises, the automated selective acquisition system has been developed and presented in this research as the alternative channel for non-contact acquisition technique where the data is selectively and locally scanned contour by contour without performing data reduction process. The results present as the organized contour points which are directly used to generate 3D virtual model. The comparison between the proposed technique and another non-contact scanning technique has been presented and discussed.

Treatment of Cutting Oily-Wastewater by Sono Fenton Process: Experimental Approach and Combined Process

Conventional coagulation, advance oxidation process (AOPs), and the combined process were evaluated and compared for its suitability to treat the stabilized cutting-oil wastewater. The 90% efficiency was obtained from the coagulation at Al2(SO4)3 dosage of 150 mg/L and pH 7. On the other hands, efficiencies of AOPs for 30 minutes oxidation time were 10% for acoustic oxidation, 12% for acoustic oxidation with hydrogen peroxide, 76% for Fenton, and 92% sono-Fenton processes. The highest efficiency for effective oil removal of AOPs required large amount of chemical. Therefore, AOPs were studied as a post-treatment after conventional separation process. The efficiency was considerable as the effluent COD can pass the standard required for industrial wastewater discharge with less chemical and energy consumption.  

Predicting Dispersion Coefficient in Free-Flowing Zones of Rivers by Genetic Programming

Transient storage zones along the flow paths of rivers have great influence on the dispersion of pollutants that are either accidentally or otherwise led into them. The speed with which these pollution clouds get transported and dispersed downstream is, to a large extent, explained by the longitudinal dispersion coefficients in the free-flowing zones of rivers (Kf). In the present work, a new empirical expression for Kf has been derived employing genetic programming (GP) on published dispersion data. The proposed expression uses few hydraulic and geometric characteristics of a river that are readily available to field engineers. Based on various performance indices, the proposed expression is found superior to other existing expression for Kf.

Identification of Micromechanical Fracture Model for Predicting Fracture Performance of Steel Wires for Civil Engineering Applications

The fracture performance of steel wires for civil engineering applications remains a major concern in civil engineering construction and maintenance of wire reinforced structures. The need to employ approaches that simulate micromechanical material processes which characterizes fracture in civil structures has been emphasized recently in the literature. However, choosing from the numerous micromechanics-based fracture models, and identifying their applicability and reliability remains an issue that still needs to be addressed in a greater depth. Laboratory tensile testing and finite element tensile testing simulations with the shear, ductile and Gurson-Tvergaard-Needleman’s micromechanics-based models conducted in this work reveal that the shear fracture model is an appropriate fracture model to predict the fracture performance of steel wires used for civil engineering applications. The need to consider the capability of the micromechanics-based fracture model to predict the “cup and cone” fracture exhibited by the wire in choosing the appropriate fracture model is demonstrated.

Cloning and Functional Characterization of Promoter Elements of the D Hordein Gene from the Barley (Hordeum vulgare L.) by Bioinformatic Tools

The low level of foreign genes expression in transgenic plants is a key factor that limits plant genetic engineering. Because of the critical regulatory activity of the promoters on gene transcription, they are studied extensively to improve the efficiency of the plant transgenic system. The strong constitutive promoters, such as CaMV 35S promoter and Ubiqutin 1 maize are usually used in plant biotechnology research. However the expression level of the foreign genes in all tissues is often undesirable. But using a strong seed-specific promoter to limit gene expression in the seed solves such problems. The purpose of this study is to isolate one of the seed specific promoters of Hordeum vulgare. So one of the common varieties of Hordeum vulgare in Iran was selected and their genomes extracted then the D-Hordein promoter amplified using the specific designed primers. Then the amplified fragment of the insert cloned in an appropriate vector and then transformed to E. coli. At last for the final admission of accuracy the cloned fragments sent for sequencing. Sequencing analysis showed that the cloned fragment DHPcontained motifs; like TATA box, CAAT-box, CCGTCC-box, AMYBOX1 and E-box etc., which constituted the seed-specific promoter activity. The results were compared with sequences existing in data banks. D-Hordein promoters of Alger has 99% similarity at 100 % coverage. The results also showed that D-Hordein promoter of barley and HMW promoter of wheat are too similar.

Linear Programming Application in Unit Commitment of Wind Farms with Considering Uncertainties

Due to uncertainty of wind velocity, wind power generators don’t have deterministic output power. Utilizing wind power generation and thermal power plants together create new concerns for operation engineers of power systems. In this paper, a model is presented to implement the uncertainty of load and generated wind power which can be utilized in power system operation planning. Stochastic behavior of parameters is simulated by generating scenarios that can be solved by deterministic method. A mixed-integer linear programming method is used for solving deterministic generation scheduling problem. The proposed approach is applied to a 12-unit test system including 10 thermal units and 2 wind farms. The results show affectivity of piecewise linear model in unit commitment problems. Also using linear programming causes a considerable reduction in calculation times and guarantees convergence to the global optimum. Neglecting the uncertainty of wind velocity causes higher cost assessment of generation scheduling.

Cyber Bullying Victimization of Elementary School Students and their Reflections on the Victimization

With the use of developing technology, mostly in communication and entertainment, students spend considerable time on the Internet. In addition to the advantages provided by the Internet, social isolation brings problems such as addiction. This is one of the problems of the virtual violence. Cyber bullying is the common name of the intensities which students are exposed on the Internet. The purpose of this study designed as a qualitative research is to find out the cyber bullying varieties and its effects on elementary school students. The participants of this research are 6th, 7th and 8th grade students of a primary school and 24 students agreed to participate in the study. The students were asked to fill an interview with semi-structured open-ended questions. According to the results obtained in the research, the most important statements determined by the participants are breaking passwords on social networking sites, slang insult to blasphemy and taking friendship offers from unfamiliar people. According to participants from the research, the most used techniques to prevent themselves from cyber bullying are to complain to the site administrator, closing accounts on social networking sites and countercharging. Also, suggestions were presented according to the findings.

Knowledge Transformation Flow (KTF) of Visually Impaired Students: The Virtual Knowledge System as a New Service Innovation

This paper aims to present the key factors that support the decision to use the technology and to present the knowledge transformation flow of visually impaired students after the use of virtual knowledge system as proposed as a new service innovation to universities in Thailand. Correspondents of 27 visually impaired students are involved in this research. Total of 25 students are selected from university that mainly conducts non-classroom teaching environment; while another 2 visually impaired students are selected from classroom teaching environment. All of them are fully involved in the study along 8 weeks duration. All correspondents are classified into 5 small groups in various conditions. The research results revealed that the involvement from knowledge facilitator can push out for the behavioral actual use of the virtual knowledge system although there is no any developed intention to use behaviors. Secondly, the situations that the visually impaired students inadequate of the knowledge sources that usually provided by assistants i.e. peers, audio files etc. In this case, they will use the virtual knowledge system for both knowledge access and knowledge transfer request. With this evidence, the need of knowledge would play a stronger role than all technology acceptance factors. Finally, this paper revealed that the knowledge transfer in normal method that students have a chance to physically meet up is still confirmed as their preference method. In term of other aspects of technology acceptance, it will be discussed together with challenges and recommendations at the end of this paper.

A Novel GNSS Integrity Augmentation System for Civil and Military Aircraft

This paper presents a novel Global Navigation Satellite System (GNSS) Avionics Based Integrity Augmentation (ABIA) system architecture suitable for civil and military air platforms, including Unmanned Aircraft Systems (UAS). Taking the move from previous research on high-accuracy Differential GNSS (DGNSS) systems design, integration and experimental flight test activities conducted at the Italian Air Force Flight Test Centre (CSV-RSV), our research focused on the development of a novel approach to the problem of GNSS ABIA for mission- and safety-critical air vehicle applications and for multi-sensor avionics architectures based on GNSS. Detailed mathematical models were developed to describe the main causes of GNSS signal outages and degradation in flight, namely: antenna obscuration, multipath, fading due to adverse geometry and Doppler shift. Adopting these models in association with suitable integrity thresholds and guidance algorithms, the ABIA system is able to generate integrity cautions (predictive flags) and warnings (reactive flags), as well as providing steering information to the pilot and electronic commands to the aircraft/UAS flight control systems. These features allow real-time avoidance of safety-critical flight conditions and fast recovery of the required navigation performance in case of GNSS data losses. In other words, this novel ABIA system addresses all three cornerstones of GNSS integrity augmentation in mission- and safety-critical applications: prediction (caution flags), reaction (warning flags) and correction (alternate flight path computation).

An Integrated Supply Chain Management to Manufacturing Industries

Manufacturers have been exploring innovative strategies to achieve and sustain competitive advantages as they face a new era of intensive global competition. Such strategy is known as Supply Chain Management (SCM), which has gained a tremendous amount of attention from both researchers and practitioners over the last decade. Supply chain management (SCM) is considered as the most popular operating strategy for improving organizational competitiveness in the twenty-first century. It has attracted a lot of attention recently due to its role involving all of the activities in industrial organizations, ranging from raw material procurement to final product delivery to customers. Well-designed supply chain systems can substantially improve efficiency and product quality, and eventually enhance customer satisfaction and profitability. In this paper, a manufacturing engineering perspective on supply chain integration is presented. Research issues discussed include the product and process design for the supply chain, design evaluation of manufacturing in the supply chain, agent-based techniques for supply chain integration, intelligent information for sharing across the supply chain, and a development of standards for product, process, and production data exchange to facilitate electronic commerce. The objective is to provide guidelines and references for manufacturing engineers and researchers interested in supply chain integration.

An Exploration on Competency-Based Curricula in Integrated Circuit Design

In this paper the relationships between professional competences and school curriculain IC design industry are explored. The semi-structured questionnaire survey and focus group interview is the research method. Study participants are graduates of microelectronics engineering professional departments who are currently employed in the IC industry. The IC industries are defined as the electronic component manufacturing industry and optical-electronic component manufacturing industry in the semiconductor industry and optical-electronic material devices, respectively. Study participants selected from IC design industry include IC engineering and electronic & semiconductor engineering. The human training with IC design professional competence in microelectronics engineering professional departments is explored in this research. IC professional competences of human resources in the IC design industry include general intelligence and professional intelligence.

An Enhanced AODV Routing Protocol for Wireless Sensor and Actuator Networks

An enhanced ad-hoc on-demand distance vector routing (E-AODV) protocol for control system applications in wireless sensor and actuator networks (WSANs) is proposed. Our routing algorithm is designed by considering both wireless network communication and the control system aspects. Control system error and network delay are the main selection criteria in our routing protocol. The control and communication performance is evaluated on multi-hop IEEE 802.15.4 networks for building-temperature control systems. The Gilbert-Elliott error model is employed to simulate packet loss in wireless networks. The simulation results demonstrate that the E-AODV routing approach can significantly improve the communication performance better than an original AODV routing under various packet loss rates. However, the control performance result by our approach is not much improved compared with the AODV routing solution.