Study of Compaction in Hot-Mix Asphalt Using Computer Simulations

During the process of compaction in Hot-Mix Asphalt (HMA) mixtures, the distance between aggregate particles decreases as they come together and eliminate air-voids. By measuring the inter-particle distances in a cut-section of a HMA sample the degree of compaction can be estimated. For this, a calibration curve is generated by computer simulation technique when the gradation and asphalt content of the HMA mixture are known. A two-dimensional cross section of HMA specimen was simulated using the mixture design information (gradation, asphalt content and air-void content). Nearest neighbor distance methods such as Delaunay triangulation were used to study the changes in inter-particle distance and area distribution during the process of compaction in HMA. Such computer simulations would enable making several hundreds of repetitions in a short period of time without the necessity to compact and analyze laboratory specimens in order to obtain good statistics on the parameters defined. The distributions for the statistical parameters based on computer simulations showed similar trends as those of laboratory specimens.

Design Management Applications to Improve Work Environment for Female Academics in Saudi Arabia

This research study examines cases of Saudi Arabian universities and female academics for work environment issues within the context of design management applications. The study proposes use of design research, ergonomics and systems design thinking to develop the university design which facilitates removal of physical and cognitive barriers for female academics. Review of literature demonstrates that macro and micro ergonomic combined with design management and system design strategies can significantly improve the workplace design for female academics. The university design model would be prepared based on the analyses of primary data obtained from archived documents, participants' observation logs, photo audits, focus groups and semi-structured interviews of currently employed female academics in the selected case universities.

Characterization and Modeling of Packet Loss of a VoIP Communication

In this work, a characterization and modeling of packet loss of a Voice over Internet Protocol (VoIP) communication is developed. The distributions of the number of consecutive received and lost packets (namely gap and burst) are modeled from the transition probabilities of two-state and four-state model. Measurements show that both models describe adequately the burst distribution, but the decay of gap distribution for non-homogeneous losses is better fit by the four-state model. The respective probabilities of transition between states for each model were estimated with a proposed algorithm from a set of monitored VoIP calls in order to obtain representative minimum, maximum and average values for both models.

Statistical Approach to Basis Function Truncation in Digital Interpolation Filters

In this paper an alternative analysis in the time domain is described and the results of the interpolation process are presented by means of functions that are based on the rule of conditional mathematical expectation and the covariance function. A comparison between the interpolation error caused by low order filters and the classic sinc(t) truncated function is also presented. When fewer samples are used, low-order filters have less error. If the number of samples increases, the sinc(t) type functions are a better alternative. Generally speaking there is an optimal filter for each input signal which depends on the filter length and covariance function of the signal. A novel scheme of work for adaptive interpolation filters is also presented.

Performance Analysis of an Adaptive Threshold Hybrid Double-Dwell System with Antenna Diversity for Acquisition in DS-CDMA Systems

In this paper, we consider the analysis of the acquisition process for a hybrid double-dwell system with antenna diversity for DS-CDMA (direct sequence-code division multiple access) using an adaptive threshold. Acquisition systems with a fixed threshold value are unable to adapt to fast varying mobile communications environments and may result in a high false alarm rate, and/or low detection probability. Therefore, we propose an adaptively varying threshold scheme through the use of a cellaveraging constant false alarm rate (CA-CFAR) algorithm, which is well known in the field of radar detection. We derive exact expressions for the probabilities of detection and false alarm in Rayleigh fading channels. The mean acquisition time of the system under consideration is also derived. The performance of the system is analyzed and compared to that of a hybrid single dwell system.

Fuzzy Cost Support Vector Regression

In this paper, a new version of support vector regression (SVR) is presented namely Fuzzy Cost SVR (FCSVR). Individual property of the FCSVR is operation over fuzzy data whereas fuzzy cost (fuzzy margin and fuzzy penalty) are maximized. This idea admits to have uncertainty in the penalty and margin terms jointly. Robustness against noise is shown in the experimental results as a property of the proposed method and superiority relative conventional SVR.

Researches on Simulation and Validation of Airborne Enhanced Ground Proximity Warning System

In this paper, enhanced ground proximity warning simulation and validation system is designed and implemented. First, based on square grid and sub-grid structure, the global digital terrain database is designed and constructed. Terrain data searching is implemented through querying the latitude and longitude bands and separated zones of global terrain database with the current aircraft position. A combination of dynamic scheduling and hierarchical scheduling is adopted to schedule the terrain data, and the terrain data can be read and delete dynamically in the memory. Secondly, according to the scope, distance, approach speed information etc. to the dangerous terrain in front, and using security profiles calculating method, collision threat detection is executed in real-time, and provides caution and warning alarm. According to this scheme, the implementation of the enhanced ground proximity warning simulation system is realized. Simulations are carried out to verify a good real-time in terrain display and alarm trigger, and the results show simulation system is realized correctly, reasonably and stable.

Analysis of Capillary Coating Die Flow in an Optical Fiber Coating Applicator

Viscous heating becomes significant in the high speed resin coating process of glass fibers for optical fiber manufacturing. This study focuses on the coating resin flows inside the capillary coating die of optical fiber coating applicator and they are numerically simulated to examine the effects of viscous heating and subsequent temperature increase in coating resin. Resin flows are driven by fast moving glass fiber and the pressurization at the coating die inlet, while the temperature dependent viscosity of liquid coating resin plays an important role in the resin flow. It is found that the severe viscous heating near the coating die wall profoundly alters the radial velocity profiles and that the increase of final coating thickness by die pressurization is amplified if viscous heating is present.

Active Control for Reduction of Noise Passing through Enclosure and Optimization of Microphone Position

In this study, noise characteristics of structure were analyzed in an effort to reduce noise passing through an opening of an enclosure surrounding the structure that generates noise. Enclosures are essential measure to protect noise propagation from operating machinery. Access openings of the enclosures are important path of noise leakage. First, noise characteristics of structure were analyzed and feed-forward noise control was performed using simulation in order to reduce noise passing through the opening of enclosure, which surrounds a structure generating noise. We then implemented a feed-forward controller to actively control the acoustic power through the opening. Finally, we conducted optimization of placement of the reference sensors for several cases of the number of sensors. Good control performances were achieved using the minimum number of microphones arranged an optimal placement.

Optimizing the Design of Radial/Axial PMSM and SRM used for Powered Wheel-Chairs

the paper presents the optimization results for several electrical machines dedicated for powered electric wheel-chairs. The optimization, using the Hook-Jeeves algorithm, was employed based on a design approach which takes into consideration the road conditions. Also, through numerical simulations (based on finite element method), the analytical approach was validated. The optimization approach gave satisfactory results and the best suited variant was chosen for the motorization of the wheel-chair.

Design a Biodegradable Hydrogel for Drug Delivery System

In this article, we synthesize a novel chitosan -based superabsorbent hydrogel via graft copolymerization of mixtures acrylic acid (AA) and N-vinyl pyrollidon onto chitosan backbones. The polymerization reaction was carried out in an aqueous medium and in the presence of ammonium persulfate (APS) as an initiator and N,N'-methylene bisacrylamide (MBA) as a crosslinker.The hydrogel structures were confirmed by FTIR spectroscopy. The swelling behavior of these absorbent polymers was also investigated in various salt solutions. Results indicated that the swelling capacity decreased with an increase in the ionic strength of the swelling medium. Furthermore, the swelling of superabsorbing hydrogels was examined in solutions with pH values ranging between 1.0 and 13.0. It showed a reversible pH-responsive behavior at pHs 2.0 and 8.0. This on-off switching behavior makes the synthesized hydrogels as an excellent candidate for controlled delivery of bioactive agents.

On Convergence of Affine Thin Plate Bending Element

In the present paper the displacement-based nonconforming quadrilateral affine thin plate bending finite element ARPQ4 is presented, derived directly from non-conforming quadrilateral thin plate bending finite element RPQ4 proposed by Wanji and Cheung [19]. It is found, however, that element RPQ4 is only conditionally unisolvent. The new element is shown to be inherently unisolvent. This convenient property results in the element ARPQ4 being more robust and thus better suited for computations than its predecessor. The convergence is proved and the rate of convergence estimated. The mathematically rigorous proof of convergence presented in the paper is based on Stummel-s generalized patch test and the consideration of the element approximability condition, which are both necessary and sufficient for convergence.

A Discriminatory Rewarding Mechanism for Sybil Detection with Applications to Tor

This paper presents an economic game for sybil detection in a distributed computing environment. Cost parameters reflecting impacts of different sybil attacks are introduced in the sybil detection game. The optimal strategies for this game in which both sybil and non-sybil identities are expected to participate are devised. A cost sharing economic mechanism called Discriminatory Rewarding Mechanism for Sybil Detection is proposed based on this game. A detective accepts a security deposit from each active agent, negotiates with the agents and offers rewards to the sybils if the latter disclose their identity. The basic objective of the detective is to determine the optimum reward amount for each sybil which will encourage the maximum possible number of sybils to reveal themselves. Maintaining privacy is an important issue for the mechanism since the participants involved in the negotiation are generally reluctant to share their private information. The mechanism has been applied to Tor by introducing a reputation scoring function.

A Novel Hopfield Neural Network for Perfect Calculation of Magnetic Resonance Spectroscopy

In this paper, an automatic determination algorithm for nuclear magnetic resonance (NMR) spectra of the metabolites in the living body by magnetic resonance spectroscopy (MRS) without human intervention or complicated calculations is presented. In such method, the problem of NMR spectrum determination is transformed into the determination of the parameters of a mathematical model of the NMR signal. To calculate these parameters efficiently, a new model called modified Hopfield neural network is designed. The main achievement of this paper over the work in literature [30] is that the speed of the modified Hopfield neural network is accelerated. This is done by applying cross correlation in the frequency domain between the input values and the input weights. The modified Hopfield neural network can accomplish complex dignals perfectly with out any additinal computation steps. This is a valuable advantage as NMR signals are complex-valued. In addition, a technique called “modified sequential extension of section (MSES)" that takes into account the damping rate of the NMR signal is developed to be faster than that presented in [30]. Simulation results show that the calculation precision of the spectrum improves when MSES is used along with the neural network. Furthermore, MSES is found to reduce the local minimum problem in Hopfield neural networks. Moreover, the performance of the proposed method is evaluated and there is no effect on the performance of calculations when using the modified Hopfield neural networks.

Computational Identification of Bacterial Communities

Stable bacterial polymorphism on a single limiting resource may appear if between the evolved strains metabolic interactions take place that allow the exchange of essential nutrients [8]. Towards an attempt to predict the possible outcome of longrunning evolution experiments, a network based on the metabolic capabilities of homogeneous populations of every single gene knockout strain (nodes) of the bacterium E. coli is reconstructed. Potential metabolic interactions (edges) are allowed only between strains of different metabolic capabilities. Bacterial communities are determined by finding cliques in this network. Growth of the emerged hypothetical bacterial communities is simulated by extending the metabolic flux balance analysis model of Varma et al [2] to embody heterogeneous cell population growth in a mutual environment. Results from aerobic growth on 10 different carbon sources are presented. The upper bounds of the diversity that can emerge from single-cloned populations of E. coli such as the number of strains that appears to metabolically differ from most strains (highly connected nodes), the maximum clique size as well as the number of all the possible communities are determined. Certain single gene deletions are identified to consistently participate in our hypothetical bacterial communities under most environmental conditions implying a pattern of growth-condition- invariant strains with similar metabolic effects. Moreover, evaluation of all the hypothetical bacterial communities under growth on pyruvate reveals heterogeneous populations that can exhibit superior growth performance when compared to the performance of the homogeneous wild-type population.

Maximum Water Hammer Sensitivity Analysis

Pressure waves and Water Hammer occur in a pumping system when valves are closed or opened suddenly or in the case of sudden failure of pumps. Determination of maximum water hammer is considered one of the most important technical and economical items of which engineers and designers of pumping stations and conveyance pipelines should take care. Hammer Software is a recent application used to simulate water hammer. The present study focuses on determining significance of each input parameter of the application relative to the maximum amount of water hammer estimated by the software. The study determines estimated maximum water hammer variations due to variations of input parameters including water temperature, pipe type, thickness and diameter, electromotor rpm and power, and moment of inertia of electromotor and pump. In our study, Kuhrang Pumping Station was modeled using WaterGEMS Software. The pumping station is characterized by total discharge of 200 liters per second, dynamic height of 194 meters and 1.5 kilometers of steel conveyance pipeline and transports water to Cheshme Morvarid for farmland irrigation. The model was run in steady hydraulic condition and transferred to Hammer Software. Then, the model was run in several unsteady hydraulic conditions and sensitivity of maximum water hammer to each input parameter was calculated. It is shown that parameters to which maximum water hammer is most sensitive are moment of inertia of pump and electromotor, diameter, type and thickness of pipe and water temperature, respectively.

The Impact of Fish Cages on Water Quality in One Fish Farm in Croatia

In Croatia, the majority of cultured marine fish species are reared in net cages. The intensive production of the fish in net cages may generate the considerable amount of bio waste and change water quality especially in enclosed and semi-enclosed coastal areas. The aim of this paper is to assess the potential impact of sea bass (Dicentrarchus labrax L.) cage farm on water quality. The weak relationship between food supply and water quality parameters (nutrient content and phytoplankton biomass) was found, but significant changes in oxygen saturation was observed in the cages during the warmer period of a year especially in the morning (occasionally it dropped below 70 %). Despite of, satisfactory results of water quality parameters, it is necessary to establish comprehensive monitoring process, especially to include quality assessment of fouling communities.

Design of a 5-Joint Mechanical Arm with User-Friendly Control Program

This paper describes the design concepts and implementation of a 5-Joint mechanical arm for a rescue robot named CEO Mission II. The multi-joint arm is a five degree of freedom mechanical arm with a four bar linkage, which can be stretched to 125 cm. long. It is controlled by a teleoperator via the user-friendly control and monitoring GUI program. With Inverse Kinematics principle, we developed the method to control the servo angles of all arm joints to get the desired tip position. By clicking the determined tip position or dragging the tip of the mechanical arm on the computer screen to the desired target point, the robot will compute and move its multi-joint arm to the pose as seen on the GUI screen. The angles of each joint are calculated and sent to all joint servos simultaneously in order to move the mechanical arm to the desired pose at once. The operator can also use a joystick to control the movement of this mechanical arm and the locomotion of the robot. Many sensors are installed at the tip of this mechanical arm for surveillance from the high level and getting the vital signs of victims easier and faster in the urban search and rescue tasks. It works very effectively and easy to control. This mechanical arm and its software were developed as a part of the CEO Mission II Rescue Robot that won the First Runner Up award and the Best Technique award from the Thailand Rescue Robot Championship 2006. It is a low cost, simple, but functioning 5-Jiont mechanical arm which is built from scratch, and controlled via wireless LAN 802.11b/g. This 5-Jiont mechanical arm hardware concept and its software can also be used as the basic mechatronics to many real applications.

Cursor Position Estimation Model for Virtual Touch Screen Using Camera

Virtual touch screen using camera is an ordinary screen which uses a camera to imitate the touch screen by taking a picture of an indicator, e.g., finger, which is laid on the screen, converting the indicator tip position on the picture to the position on the screen, and moving the cursor on the screen to that position. In fact, the indicator is not laid on the screen directly, but it is intervened by the cover at some intervals. In spite of this gap, if the eye-indicator-camera angle is not large, the mapping from the indicator tip positions on the image to the corresponding cursor positions on the screen is not difficult and could be done with a little error. However, the larger the angle is, the bigger the error in the mapping occurs. This paper proposes cursor position estimation model for virtual touch screen using camera which could eliminate this kind of error. The proposed model (i) moves the on-screen pilot cursor to the screen position which locates on the screen at the position just behind the indicator tip when the indicator tip has been looked from the camera position, and then (ii) converts that pilot cursor position to the desirable cursor position (the position on the screen when it has been looked from the user-s eye through the indicator tip) by using the bilinear transformation. Simulation results show the correctness of the estimated cursor position by using the proposed model.

Image Transmission: A Case Study on Combined Scheme of LDPC-STBC in Asynchronous Cooperative MIMO Systems

this paper presents a novel scheme which is capable of reducing the error rate and improves the transmission performance in the asynchronous cooperative MIMO systems. A case study of image transmission is applied to prove the efficient of scheme. The linear dispersion structure is employed to accommodate the cooperative wireless communication network in the dynamic topology of structure, as well as to achieve higher throughput than conventional space–time codes based on orthogonal designs. The LDPC encoder without girth-4 and the STBC encoder with guard intervals are respectively introduced. The experiment results show that the combined coder of LDPC-STBC with guard intervals can be the good error correcting coders and BER performance in the asynchronous cooperative communication. In the case study of image transmission, the results show that in the transmission process, the image quality which is obtained by applied combined scheme is much better than it which is not applied the scheme in the asynchronous cooperative MIMO systems.