QCM-D Study on Relationship of PEG Coated Stainless Steel Surfaces to Protein Resistance

Nonspecific protein adsorption generally occurs on any solid surfaces and usually has adverse consequences. Adsorption of proteins onto a solid surface is believed to be the initial and controlling step in biofouling. Surfaces modified with end-tethered poly(ethylene glycol) (PEG) have been shown to be protein-resistant to some degree. In this study, the adsorption of β-casein and lysozyme was performed on 6 different types of surfaces where PEG was tethered onto stainless steel by polyethylene imine (PEI) through either OH or NHS end groups. Protein adsorption was also performed on the bare stainless steel surface as a control. The adsorption was conducted at 23 °C and pH 7.2. In situ QCM-D was used to determine PEG adsorption kinetics, plateau PEG chain densities, protein adsorption kinetics and plateau protein adsorbed quantities. PEG grafting density was the highest for a NHS coupled chain, around 0.5 chains / nm2. Interestingly, lysozyme which has smaller size than β-casein, appeared to adsorb much less mass than that of β- casein. Overall, the surface with high PEG grafting density exhibited a good protein rejection.

Seed Treatment during Germination in Linseed to Overcome Salt and Drought Stresses (Linum usitatissimum L.)

Evaluation of crop plants resistance to environmental stresses specially in germination stage is a critical factor in their selection in different conditions of cultivation. Therefore use of a procedure in controllable situation can help to evaluate plants reaction to stress quickly and precisely. In order to study germination characteristics of flax in water and salinity stress conditions were conducted two laboratories experimental. The two experimental were conducted in 4-replicant completing random design for salinity and water stress. The treatment, for salinity and water stress was three potential (zero, 40, 80 mM) of NaCl and three potential (zero, -2, -4 bar) of PEG respectively. Germination percentage and rate, in addition to Radical and plumule length and dry-weight and plumule/Radical ration were measured. All of characteristics reduce under water stress conditions. salinity stress significant reduce germination rate and Radical and plumule length of flax seeds. Hydropriming and osmopriming significant increased germination rate, plumule length and plumule/Radical ration ration of flax seeds. But germination percentage and Radical and plumule dry weight significant increased only in hydropriming treat. Hydropriming and osmopriming could not be used to improved germination under saline and drought stress. But has more tolerance in salinity and drought stress in flax by less reduce in Radical and plumule length under saline and drought stress.

Analysis of a Singular Perturbed Synchronous Generator with a Bond Graph Approach

An analysis of a synchronous generator in a bond graph approach is proposed. This bond graph allows to determine the simplified models of the system by using singular perturbations. Firstly, the nonlinear bond graph of the generator is linearized. Then, the slow and fast state equations by applying singular perturbations are obtained. Also, a bond graph to get the quasi-steady state of the slow dynamic is proposed. In order to verify the effectiveness of the singularly perturbed models, simulation results of the complete system and reduced models are shown.

Injury Prevention among Construction Workers: A Case Study on Iranian Steel Bar Bending Workers

Nowadays the construction industry is growing specially among developing counties. Iran also has a critical role in these industries in terms of workers disorders. Work-related musculoskeletal disorders (WMSDs) assign 7% of the whole diseases in the society, which make some limitations. One of the main factors, which are ended to WMSDs, is awkward posture. Steel bar bending is considered as one of the prominent performance among construction workers. In this case study we conducted to find the major tasks of bar benders and the most important related risk factors. This study was carried out among twenty workers (18-45 years) as our volunteer samples in some construction sites with less than 6 floors in two regions of Tehran municipality. The data was gathered through in depth observation, interview and questionnaire. Also postural analysis was done by OWAS. In another part of study we used NMQ for gathering some data about psychosocial effects of work related disorders. Our findings show that 64% of workers were not aware of work risks, also about 59% of workers had troubles in their wrists, hands, and especially among workers who worked in steel bar bending. In 46% cases low back pain were prevalence. Considering with gathered data and results, awkward postures and long term tasks and its duration are known as the main risk factors in WMSDs among construction workers, so work-rest schedule and also tools design should be considered to make an ergonomic condition for the mentioned workers.

A New Empirical Expression of the Breakdown Voltage for Combined Variations of Temperature and Pressure

In aircraft applications, according to the nature of electrical equipment its location may be in unpressurized area or very close to the engine; thus, the environmental conditions may change from atmospheric pressure to less than 100 mbar, and the temperature may be higher than the ambient one as in most real working conditions of electrical equipment. Then, the classical Paschen curve has to be replotted since these parameters may affect the discharge ignition voltage. In this paper, we firstly investigate the domain of validity of two corrective expressions on the Paschen-s law found in the literature, in case of changing the air environment and known as Peek and Dunbar corrections. Results show that these corrections are no longer valid for combined variation of temperature and pressure. After that, a new empirical expression for breakdown voltage is proposed and is validated in the case of combined variations of temperature and pressure.

Recycling for Sustainability: Plant Growth Media from Coal Combustion Products, Biosolids and Compost

Generation of electricity from coal has increased over the years in the United States and around the world. Burning of coal results in annual production of upwards of 100 millions tons (United States only) of coal combustion products (CCPs). Only about a third of these products are being used to create new products while the remainder goes to landfills. Application of CCPs mixed with composted organic materials onto soil can improve the soil-s physico-chemical conditions and provide essential plant nutritients. Our objective was to create plant growth media utilizing CCPs and compost in way which maximizes the use of these products and, at the same time, maintain good plant growth. Media were formulated by adding composted organic matter (COM) to CCPs at ratios ranging from 2:8 to 8:2 (v/v). The quality of these media was evaluated by measuring their physical and chemical properties and their effect on plant growth. We tested the media by 1) measuring their physical and chemical properties and 2) the growth of three plant species in the experimental media: wheat (Triticum sativum), tomato (Lycopersicum esculentum) and marigold (Tagetes patula). We achieved significantly (p < 0.001) higher growth (7-130%) in the experimental media containing CCPs compared to a commercial mix. The experimental media supplied adequate plant nutrition as no fertilization was provided during the experiment. Based on the results, we recommend the use of CCPs and composts for the creation of plant growth media.

Study Forecast Indoor Acoustics. A Case Study: the Auditorium Theatre-Hotel “Casa Tra Noi“

The theatre-auditorium under investigation following the highly reflective characteristics of materials used in it (marble, painted wood, smooth plaster, etc), architectural and structural features of the Protocol and its intended use (very multifunctional: Auditorium, theatre, cinema, musicals, conference room) from the analysis of the statement of fact made by the acoustic simulation software Ramsete and supported by data obtained through a campaign of acoustic measurements of the state of fact made on the spot by a Fonomet Svantek model SVAN 957, appears to be acoustically inadequate. After the completion of the 3D model according to the specifications necessary software used forecast in order to be recognized by him, have made three simulations, acoustic simulation of the state of and acoustic simulation of two design solutions. Improved noise characteristics found in the first design solution, compared to the state in fact consists therefore in lowering Reverberation Time that you turn most desirable value, while the Indicators of Clarity, the Baricentric Time, the Lateral Efficiency, Ratio of Low Tmedia BR and defined the Speech Intelligibility improved significantly. Improved noise characteristics found instead in the second design solution, as compared to first design solution, is finally mostly in a more uniform distribution of Leq and in lowering Reverberation Time that you turn the optimum values. Indicators of Clarity, and the Lateral Efficiency improve further but at the expense of a value slightly worse than the BR. Slightly vary the remaining indices.

Phenotypes of B Cells Differ in EBV-positive Burkitt-s lymphoma Derived Cell Lines

Epstein-Barr virus (EBV) is implicated in the pathogenesis of the endemic Burkitt-s lymphoma (BL). The EBVpositive BL-derived cell lines initially maintain the original tumor phenotype of EBV infection (latency I, LatI), but most of them drift toward a lymphoblast phenotype of EBV latency III (LatIII) during in vitro culturing. The aim of the present work was to characterize the B-cell subsets in EBV-positive BL cell lines and to verify whether a particular cell subset correlates with the type of EBV infection. The phenotype analysis of two EBV-negative and eleven EBV-positive (three of LatI and eight of LatIII) BL cell lines was performed by polychromatic flow cytomery, based on expression pattern of CD19, CD10, CD38, CD27, and CD5 markers. Two cell subsets, CD19+CD10+ and CD19+CD10-, were defined in LatIII BL cell lines. In both subsets, the CD27 and CD5 cell surface expression was detected in a proportion of the cells.

Efficient Real-time Remote Data Propagation Mechanism for a Component-Based Approach to Distributed Manufacturing

Manufacturing Industries face a crucial change as products and processes are required to, easily and efficiently, be reconfigurable and reusable. In order to stay competitive and flexible, situations also demand distribution of enterprises globally, which requires implementation of efficient communication strategies. A prototype system called the “Broadcaster" has been developed with an assumption that the control environment description has been engineered using the Component-based system paradigm. This prototype distributes information to a number of globally distributed partners via an adoption of the circular-based data processing mechanism. The work highlighted in this paper includes the implementation of this mechanism in the domain of the manufacturing industry. The proposed solution enables real-time remote propagation of machine information to a number of distributed supply chain client resources such as a HMI, VRML-based 3D views and remote client instances regardless of their distribution nature and/ or their mechanisms. This approach is presented together with a set of evaluation results. Authors- main concentration surrounds the reliability and the performance metric of the adopted approach. Performance evaluation is carried out in terms of the response times taken to process the data in this domain and compared with an alternative data processing implementation such as the linear queue mechanism. Based on the evaluation results obtained, authors justify the benefits achieved from this proposed implementation and highlight any further research work that is to be carried out.

An Application of a Cost Minimization Model in Determining Safety Stock Level and Location

In recent decades, the lean methodology, and the development of its principles and concepts have widely been applied in supply chain management. One of the most important strategies of being lean is having efficient inventory within the chain. On the other hand, managing inventory efficiently requires appropriate management of safety stock in order to protect against increasing stretch in the breaking points of the supply chain, which in turn can result in possible reduction of inventory. This paper applies a safety stock cost minimization model in a manufacturing company. The model results in optimum levels and locations of safety stock within the company-s supply chain in order to minimize total logistics costs.

Bipolar Square Wave Pulses for Liquid Food Sterilization using Cascaded H-Bridge Multilevel Inverter

This paper presents the generation of bipolar square wave pulses with characteristics that are suitable for liquid food sterilization using a Cascaded H-bridge Multilevel Inverter (CHMI). Bipolar square waves pulses have been reported as stable for a longer time during the sterilization process with minimum heat emission and increased efficiency. The CHMI allows the system to produce bipolar square wave pulses and yielding high output voltage without using a transformer while fulfilling the pulse requirements for effective liquid food sterilization. This in turn can reduce power consumption and cost of the overall liquid food sterilization system. The simulation results have shown that pulses with peak output voltage of 2.4 kV, pulse width of between 1 2s and 1 ms at frequencies of 50 Hz and 100 Hz can be generated by a 7-level CHMI. Results from the experimental set-up based on a 5-level CHMI has indicated the potential of the proposed circuit in producing bipolar square wave output pulses with peak values that depends on the DC source level supplied to the CHMI modules, pulse width of between 12.5 2s and 1 ms at frequencies of 50 Hz and 100 Hz.

Definition of Cognitive Infocommunications and an Architectural Implementation of Cognitive Infocommunications Systems

Cognitive Infocommunications (CogInfoCom) is a new research direction which has emerged as the synergic convergence of infocommunications and the cognitive sciences. In this paper, we provide the definition of CogInfoCom, and propose an architectural framework for the interaction-oriented design of CogInfoCom systems. We provide the outlines of an application example of the interaction-oriented architecture, and briefly discuss its main characteristics.

Performance Verification of Seismic Design Codes for RC Frames

In this study, a frame work for verification of famous seismic codes is utilized. To verify the seismic codes performance, damage quantity of RC frames is compared with the target performance. Due to the randomness property of seismic design and earthquake loads excitation, in this paper, fragility curves are developed. These diagrams are utilized to evaluate performance level of structures which are designed by the seismic codes. These diagrams further illustrate the effect of load combination and reduction factors of codes on probability of damage exceedance. Two types of structures; very high important structures with high ductility and medium important structures with intermediate ductility are designed by different seismic codes. The Results reveal that usually lower damage ratio generate lower probability of exceedance. In addition, the findings indicate that there are buildings with higher quantity of bars which they have higher probability of damage exceedance. Life-cycle cost analysis utilized for comparison and final decision making process.

Simulation-Based Optimization in Performance Evaluation of Marshaling Yard Storage Policy in a Container Port

Since the last two decades, container transportation system has been faced under increasing development. This fact shows the importance of container transportation system as a key role of container terminals to link between sea and land. Therefore, there is a continuous need for the optimal use of equipment and facilities in the ports. Regarding the complex structure of container ports, this paper presents a simulation model that compares tow storage strategies for storing containers in the yard. For this purpose, we considered loading and unloading norm as an important criterion to evaluate the performance of Shahid Rajaee container port. By analysing the results of the model, it will be shown that using marshalling yard policy instead of current storage system has a significant effect on the performance level of the port and can increase the loading and unloading norm up to 14%.

Comparison of Stochastic Point Process Models of Rainfall in Singapore

Extensive rainfall disaggregation approaches have been developed and applied in climate change impact studies such as flood risk assessment and urban storm water management.In this study, five rainfall models that were capable ofdisaggregating daily rainfall data into hourly one were investigated for the rainfall record in theChangi Airport, Singapore. The objectives of this study were (i) to study the temporal characteristics of hourly rainfall in Singapore, and (ii) to evaluate the performance of variousdisaggregation models. The used models included: (i) Rectangular pulse Poisson model (RPPM), (ii) Bartlett-Lewis Rectangular pulse model (BLRPM), (iii) Bartlett-Lewis model with 2 cell types (BL2C), (iv) Bartlett-Lewis Rectangular with cell depth distribution dependent on duration (BLRD), and (v) Neyman-Scott Rectangular pulse model (NSRPM). All of these models werefitted using hourly rainfall data ranging from 1980 to 2005 (which was obtained from Changimeteorological station).The study results indicated that the weight scheme of inversely proportional variance could deliver more accurateoutputs for fitting rainfall patterns in tropical areas, and BLRPM performedrelatively better than other disaggregation models.

Diagnosis of Ovarian Cancer with Proteomic Patterns in Serum using Independent Component Analysis and Neural Networks

We propose a method for discrimination and classification of ovarian with benign, malignant and normal tissue using independent component analysis and neural networks. The method was tested for a proteomic patters set from A database, and radial basis functions neural networks. The best performance was obtained with probabilistic neural networks, resulting I 99% success rate, with 98% of specificity e 100% of sensitivity.

Three-dimensional Simulation of Flow Pattern at the Lateral Intake in Straight Path, using Finite-Volume Method

Channel junctions can be analyzed in two ways of division (lateral intake) and combined flows (confluence). The present paper investigates 3D flow pattern at lateral intake using Navier-Stokes equation and κ -ε (RNG) turbulent model. The equations are solved by Finite-Volume Method (FVM) and results are compared with the experimental data of (Barkdoll, B.D., 1997) to test the validity of the findings. Comparison of the results with the experimental data indicated a close proximity between the two sets of data which suggest a very close simulation. Results further indicated an inverse relation between the effects of discharge ratio ( r Q ) on the length and width of the separation zone. In other words, as the discharge ration increases, the length and width of separation zone decreases.

Dynamic Fuzzy-Neural Network Controller for Induction Motor Drive

In this paper, a novel approach for robust trajectory tracking of induction motor drive is presented. By combining variable structure systems theory with fuzzy logic concept and neural network techniques, a new algorithm is developed. Fuzzy logic was used for the adaptation of the learning algorithm to improve the robustness of learning and operating of the neural network. The developed control algorithm is robust to parameter variations and external influences. It also assures precise trajectory tracking with the prescribed dynamics. The algorithm was verified by simulation and the results obtained demonstrate the effectiveness of the designed controller of induction motor drives which considered as highly non linear dynamic complex systems and variable characteristics over the operating conditions.

Design of a Fuzzy Feed-forward Controller for Monitor HAGC System of Cold Rolling Mill

In this study we propose a novel monitor hydraulic automatic gauge control (HAGC) system based on fuzzy feedforward controller. This is used in the development of cold rolling mill automation system to improve the quality of cold strip. According to features/ properties of entry steel strip like its average yield stress, width of strip, and desired exit thickness, this controller realizes the compensation for the exit thickness error. The traditional methods of adjusting the roller position, can-t tolerate the variance in the entry steel strip. The proposed method uses a mathematical model of the system together with the expert knowledge to perform this adjustment while minimizing the effect of the stated problem. In order to improve the speed of the controller in rejecting disturbances introduced by entry strip thickness variations, expert knowledge is added as a feed-forward term to the HAGC system. Simulation results for the application of the proposed controller to a real cold mill show that the exit strip quality is highly improved.

Study of the Sorption of Biosurfactants from l. Pentosus on Sediments

Losses of surfactant due to sorption need to be considered when selecting surfactant doses for soil bioremediation. The degree of surfactant sorption onto soil depends primarily on the organic carbon fraction of soil and the chemical nature of the surfactant. The use of biosurfactants in the control of the bioavailability of toxicants in soils is an attractive option because of their biodegradability. In this work biosurfactants were produced from a cheap raw material, trimming vine shoots, employing Lactobacillus pentosus. When biosurfactants from L. pentosus was added to sediments the surface tensión of the water containing the sediments rapidly increase, the same behaviour was observed with the chemical surfactant Tween 20; whereas sodyum dodecyl sulphate (SDS) kept the surface tension of the water around 36 mN/m. It means, that the behaviour of biosurfactants from L. pentosus is more similar to non-ionic surfactatns than to anionic surfactants.