Recycling-Oriented Product Assessment during Design Process with Usage of Agent Technology

In the paper the method of product analysis from recycling point of view has been described. The analysis bases on set of measures that assess a product from the point of view of final stages of its lifecycle. It was assumed that such analysis will be performed at the design phase – in order to conduct such analysis the computer system that aids the designer during the design process has been developed. The structure of the computer tool, based on agent technology, and example results has been also included in the paper.

Prediction of Post Underwater Shock Properties of Polymer - Clay/Silica Hybrid Nanocomposites through Regression Models

Exploding concentrated underwater charges to damage underwater structures such as ship hulls is a part of naval warfare strategies. Adding small amounts of foreign particles (like clay or silica) of nanosize significantly improves the engineering properties of the polymers. In the present work the clay in terms 1, 2 and 3 percent by weight was surface treated with a suitable silane agent. The hybrid nanocomposite was prepared by the hand lay-up technique. Mathematical regression models have been employed for theoretical prediction. This will result in considerable savings in terms of project time, effort and cost.

Process Oriented Architecture for Emergency Scenarios in the Czech Republic

Tackling emergency situations is performed based on emergency scenarios. These scenarios do not have a uniform form in the Czech Republic. They are unstructured and developed primarily in the text form. This does not allow solving emergency situations efficiently. For this reason, the paper aims at defining a Process Oriented Architecture to support and thus to improve tackling emergency situations in the Czech Republic. The innovative Process Oriented Architecture is based on the Workflow Reference Model while taking into account the options of Business Process Management Suites for the implementation of process oriented emergency scenarios. To verify the proposed architecture the Proof of Concept has been used which covers the reception of an emergency event at the district emergency operations centre. Within the particular implementation of the proposed architecture the Bonita Open Solution has been used. The architecture created in this way is suitable not only for emergency management, but also for educational purposes.

Analytical Study of Sedimentation Formation in Lined Canals using the SHARC Software- A Case Study of the Sabilli Canal in Dezful, Iran

Sediment formation and its transport along the river course is considered as important hydraulic consideration in river engineering. Their impact on the morphology of rivers on one hand and important considerations of which in the design and construction of the hydraulic structures on the other has attracted the attention of experts in arid and semi-arid regions. Under certain conditions where the momentum energy of the flow stream reaches a specific rate, the sediment materials start to be transported with the flow. This can usually be analyzed in two different categories of suspended and bed load materials. Sedimentation phenomenon along the waterways and the conveyance of vast volume of materials into the canal networks can potentially influence water abstraction in the intake structures. This can pose a serious threat to operational sustainability and water delivery performance in the canal networks. The situation is serious where ineffective watershed management (poor vegetation cover in the water basin) is the underlying cause of soil erosion which feeds the materials into the waterways that intern would necessitate comprehensive study. The present paper aims to present an analytical investigation of the sediment process in the waterways on one hand and estimation of the sediment load transport into the lined canals using the SHARC software on the other. For this reason, the paper focuses on the comparative analysis of the hydraulic behaviors of the Sabilli main canal that feeds the pumping station with that of the Western canal in the Greater Dezful region to identify effective factors in sedimentation and ways of mitigating their impact on water abstraction in the canal systems. The method involved use of observational data available in the Dezful Dastmashoon hydrometric station along a 6 km waterway of the Sabilli main canal using the SHARC software to estimate the suspended load concentration and bed load materials. Results showed the transport of a significant volume of sediment loads from the waterways into the canal system which is assumed to have arisen from the absence of stilling basin on one hand and the gravity flow on the other has caused serious challenges. This is contrary to what occurs in the Sabilli canal, where the design feature which incorporates a settling basin just before the pumping station is the major cause of reduced sediment load transport into the canal system.Results showed that modification of the present design features by constructing a settling basin just upstream of the western intake structure can considerably reduce the entry of sediment materials into the canal system. Not only this can result in the sustainability of the hydraulic structures but can also improve operational performance of water conveyance and distribution system, all of which are the pre-requisite to secure reliable and equitable water delivery regime for the command area.

A Novel Method for Areal Surface Roughness Measurement

An area-integrating method that uses the technique of total integrated light scatter for evaluating the root mean square height of the surface Sq has been presented in the paper. It is based on the measurement of the scatter power using a flat photodiode integrator rather than an optical sphere or a hemisphere. By this means, one can obtain much less expensive and smaller instruments than traditional ones. Thanks to this, they could find their application for surface control purposes, particularly in small and medium size enterprises. A description of the functioning of the measuring unit as well as the impact caused by different factors on its properties is presented first. Next, results of measurements of the Sq values performed for optical, silicon and metal samples have been shown. It has been also proven that they are in a good agreement with the results obtained using the Ulbricht sphere instrument.

On the Numerical Simulation of Flow Past an Oscillating Circular Cylinder in a Circular Path: Oscillation Amplitude Effect

This paper presents results obtained from the numerical solution for the flow past an oscillating circular cylinder at Reynolds number of 200. The frequency of oscillation was fixed to the vortex shedding frequency from a fixed cylinder, f0, while the amplitudes of oscillations were varied from to 1.1a, where a represents the radius of the cylinder. The response of the flow through the fluid forces acting on the surface of the cylinder are investigated. The lock-on phenomenon is captured at low oscillation amplitudes.

The Performance Improvement of Automatic Modulation Recognition Using Simple Feature Manipulation, Analysis of the HOS, and Voted Decision

The use of High Order Statistics (HOS) analysis is expected to provide so many candidates of features that can be selected for pattern recognition. More candidates of the feature can be extracted using simple manipulation through a specific mathematical function prior to the HOS analysis. Feature extraction method using HOS analysis combined with Difference to the Nth-Power manipulation has been examined in application for Automatic Modulation Recognition (AMR) to perform scheme recognition of three digital modulation signal, i.e. QPSK-16QAM-64QAM in the AWGN transmission channel. The simulation results is reported when the analysis of HOS up to order-12 and the manipulation of Difference to the Nth-Power up to N = 4. The obtained accuracy rate of AMR using the method of Simple Decision obtained 90% in SNR > 10 dB in its classifier, while using the method of Voted Decision is 96% in SNR > 2 dB.

Tests for Gaussianity of a Stationary Time Series

One of the primary uses of higher order statistics in signal processing has been for detecting and estimation of non- Gaussian signals in Gaussian noise of unknown covariance. This is motivated by the ability of higher order statistics to suppress additive Gaussian noise. In this paper, several methods to test for non- Gaussianity of a given process are presented. These methods include histogram plot, kurtosis test, and hypothesis testing using cumulants and bispectrum of the available sequence. The hypothesis testing is performed by constructing a statistic to test whether the bispectrum of the given signal is non-zero. A zero bispectrum is not a proof of Gaussianity. Hence, other tests such as the kurtosis test should be employed. Examples are given to demonstrate the performance of the presented methods.

Fault Classification of Double Circuit Transmission Line Using Artificial Neural Network

This paper addresses the problems encountered by conventional distance relays when protecting double-circuit transmission lines. The problems arise principally as a result of the mutual coupling between the two circuits under different fault conditions; this mutual coupling is highly nonlinear in nature. An adaptive protection scheme is proposed for such lines based on application of artificial neural network (ANN). ANN has the ability to classify the nonlinear relationship between measured signals by identifying different patterns of the associated signals. One of the key points of the present work is that only current signals measured at local end have been used to detect and classify the faults in the double circuit transmission line with double end infeed. The adaptive protection scheme is tested under a specific fault type, but varying fault location, fault resistance, fault inception angle and with remote end infeed. An improved performance is experienced once the neural network is trained adequately, which performs precisely when faced with different system parameters and conditions. The entire test results clearly show that the fault is detected and classified within a quarter cycle; thus the proposed adaptive protection technique is well suited for double circuit transmission line fault detection & classification. Results of performance studies show that the proposed neural network-based module can improve the performance of conventional fault selection algorithms.

Preliminary Study on Fixture Layout Optimization Using Element Strain Energy

The objective of positioning the fixture elements in the fixture is to make the workpiece stiff, so that geometric errors in the manufacturing process can be reduced. Most of the work for optimal fixture layout used the minimization of the sum of the nodal deflection normal to the surface as objective function. All deflections in other direction have been neglected. We propose a new method for fixture layout optimization in this paper, which uses the element strain energy. The deformations in all the directions have been considered in this way. The objective function in this method is to minimize the sum of square of element strain energy. Strain energy and stiffness are inversely proportional to each other. The optimization problem is solved by the sequential quadratic programming method. Three different kinds of case studies are presented, and results are compared with the method using nodal deflections as objective function to verify the propose method.

Performance Determinants for Convenience Store Suppliers

This paper examines the impact of information and communication technology (ICT) usage, internal relationship, supplier-retailer relationship, logistics services and inventory management on convenience store suppliers- performance. Data was collected from 275 convenience store managers in Malaysia using a set of questionnaire. The multiple linear regression results indicate that inventory management, supplier-retailer relationship, logistics services and internal relationship are predictors of supplier performance as perceived by convenience store managers. However, ICT usage is not a predictor of supplier performance. The study focuses only on convenience stores and petrol station convenience stores and concentrates only on managers. The results provide insights to suppliers who serve convenience stores and possibly similar retail format on factors to consider in improving their service to retailers. The results also provide insights to government in its aspiration to improve business operations of convenience store to consider ways to enhance the adoption of ICT by retailers and suppliers.

Using Data Fusion for Biometric Verification

A wide spectrum of systems require reliable personal recognition schemes to either confirm or determine the identity of an individual person. This paper considers multimodal biometric system and their applicability to access control, authentication and security applications. Strategies for feature extraction and sensor fusion are considered and contrasted. Issues related to performance assessment, deployment and standardization are discussed. Finally future directions of biometric systems development are discussed.

Knowledge Mining in Web-based Learning Environments

The state of the art in instructional design for computer-assisted learning has been strongly influenced by advances in information technology, Internet and Web-based systems. The emphasis of educational systems has shifted from training to learning. The course delivered has also been changed from large inflexible content to sequential small chunks of learning objects. The concepts of learning objects together with the advanced technologies of Web and communications support the reusability, interoperability, and accessibility design criteria currently exploited by most learning systems. These concepts enable just-in-time learning. We propose to extend theses design criteria further to include the learnability concept that will help adapting content to the needs of learners. The learnability concept offers a better personalization leading to the creation and delivery of course content more appropriate to performance and interest of each learner. In this paper we present a new framework of learning environments containing knowledge discovery as a tool to automatically learn patterns of learning behavior from learners' profiles and history.

Preliminary Results of In-Vitro Skin Tissue Soldering using Gold Nanoshells and ICG Combination

Laser soldering is based on applying some soldering material (albumin) onto the approximated edges of the cut and heating the solder (and the underlying tissues) by a laser beam. Endogenous and exogenous materials such as indocyanine green (ICG) are often added to solders to enhance light absorption. Gold nanoshells are new materials which have an optical response dictated by the plasmon resonance. The wavelength at which the resonance occurs depends on the core and shell sizes, allowing nanoshells to be tailored for particular applications. The purposes of this study was use combination of ICG and different concentration of gold nanoshells for skin tissue soldering and also to examine the effect of laser soldering parameters on the properties of repaired skin. Two mixtures of albumin solder and different combinations of ICG and gold nanoshells were prepared. A full thickness incision of 2×20 mm2 was made on the surface and after addition of mixtures it was irradiated by an 810nm diode laser at different power densities. The changes of tensile strength σt due to temperature rise, number of scan (Ns), and scan velocity (Vs) were investigated. The results showed at constant laser power density (I), σt of repaired incisions increases by increasing the concentration of gold nanoshells in solder, Ns and decreasing Vs. It is therefore important to consider the tradeoff between the scan velocity and the surface temperature for achieving an optimum operating condition. In our case this corresponds to σt =1800 gr/cm2 at I~ 47 Wcm-2, T ~ 85ºC, Ns =10 and Vs=0.3mms-1.

A Supply Chain Perspective of RFID Systems

Radio Frequency Identification (RFID) initially introduced during WW-II, has revolutionized the world with its numerous benefits and plethora of implementations in diverse areas ranging from manufacturing to agriculture to healthcare to hotel management. This work reviews the current research in this area with emphasis on applications for supply chain management and to develop a taxonomic framework to classify literature which will enable swift and easy content analysis and also help identify areas for future research.

Effect of Ginger and L-Carnitine on the Reproductive Performance of Male Rats

In this study, we investigated the effects of ginger and L-carnitine on the reproductive performance of male rats with respect to semen parameters, male sex hormones and the testicular antioxidant system. A total of sixty mature male albino rats were divided into four groups of fifteen rats. The control group received saline, whereas the other three groups received ginger (100 mg kg-1 d- 1.), L-carnitine (150 mg kg-1 d-1.) or a combination of both ginger (100 mg kg-1 d-1.) and L-carnitine (150 mg kg-1 d-1.) via a stomach tube daily for one month. At the end of the treatment period, the rats were sacrificed, and their sperm characteristics (count, motility and viability), antioxidant enzyme factors levels (reduced glutathione, catalase, superoxide dismutase and total antioxidant capacity) and sex hormone levels (testosterone, Follicle stimulating hormone(FSH) and luteinizing hormone (LH) were analysed. Our results showed that the three experimental treatments improved sperm parameters, antioxidant enzyme activity and testosterone hormone levels; the most pronounced positive effects were observed in the group that received a combination of both ginger and L-carnitine. Therefore, the administration of a combination of ginger and L-carnitine may be beneficial for improving male sexual performance.

Named Entity Recognition using Support Vector Machine: A Language Independent Approach

Named Entity Recognition (NER) aims to classify each word of a document into predefined target named entity classes and is now-a-days considered to be fundamental for many Natural Language Processing (NLP) tasks such as information retrieval, machine translation, information extraction, question answering systems and others. This paper reports about the development of a NER system for Bengali and Hindi using Support Vector Machine (SVM). Though this state of the art machine learning technique has been widely applied to NER in several well-studied languages, the use of this technique to Indian languages (ILs) is very new. The system makes use of the different contextual information of the words along with the variety of features that are helpful in predicting the four different named (NE) classes, such as Person name, Location name, Organization name and Miscellaneous name. We have used the annotated corpora of 122,467 tokens of Bengali and 502,974 tokens of Hindi tagged with the twelve different NE classes 1, defined as part of the IJCNLP-08 NER Shared Task for South and South East Asian Languages (SSEAL) 2. In addition, we have manually annotated 150K wordforms of the Bengali news corpus, developed from the web-archive of a leading Bengali newspaper. We have also developed an unsupervised algorithm in order to generate the lexical context patterns from a part of the unlabeled Bengali news corpus. Lexical patterns have been used as the features of SVM in order to improve the system performance. The NER system has been tested with the gold standard test sets of 35K, and 60K tokens for Bengali, and Hindi, respectively. Evaluation results have demonstrated the recall, precision, and f-score values of 88.61%, 80.12%, and 84.15%, respectively, for Bengali and 80.23%, 74.34%, and 77.17%, respectively, for Hindi. Results show the improvement in the f-score by 5.13% with the use of context patterns. Statistical analysis, ANOVA is also performed to compare the performance of the proposed NER system with that of the existing HMM based system for both the languages.

Feature Extraction for Surface Classification – An Approach with Wavelets

Surface metrology with image processing is a challenging task having wide applications in industry. Surface roughness can be evaluated using texture classification approach. Important aspect here is appropriate selection of features that characterize the surface. We propose an effective combination of features for multi-scale and multi-directional analysis of engineering surfaces. The features include standard deviation, kurtosis and the Canny edge detector. We apply the method by analyzing the surfaces with Discrete Wavelet Transform (DWT) and Dual-Tree Complex Wavelet Transform (DT-CWT). We used Canberra distance metric for similarity comparison between the surface classes. Our database includes the surface textures manufactured by three machining processes namely Milling, Casting and Shaping. The comparative study shows that DT-CWT outperforms DWT giving correct classification performance of 91.27% with Canberra distance metric.

The Performance of Predictive Classification Using Empirical Bayes

This research is aimed to compare the percentages of correct classification of Empirical Bayes method (EB) to Classical method when data are constructed as near normal, short-tailed and long-tailed symmetric, short-tailed and long-tailed asymmetric. The study is performed using conjugate prior, normal distribution with known mean and unknown variance. The estimated hyper-parameters obtained from EB method are replaced in the posterior predictive probability and used to predict new observations. Data are generated, consisting of training set and test set with the sample sizes 100, 200 and 500 for the binary classification. The results showed that EB method exhibited an improved performance over Classical method in all situations under study.

A Study of Gaps in CBMIR Using Different Methods and Prospective

In recent years, rapid advances in software and hardware in the field of information technology along with a digital imaging revolution in the medical domain facilitate the generation and storage of large collections of images by hospitals and clinics. To search these large image collections effectively and efficiently poses significant technical challenges, and it raises the necessity of constructing intelligent retrieval systems. Content-based Image Retrieval (CBIR) consists of retrieving the most visually similar images to a given query image from a database of images[5]. Medical CBIR (content-based image retrieval) applications pose unique challenges but at the same time offer many new opportunities. On one hand, while one can easily understand news or sports videos, a medical image is often completely incomprehensible to untrained eyes.