On the Fixed Rainfall Intensity: Effects on Overland Flow Resistance, Shear Velocity and on Soil Erosion

Raindrops and overland flow both are erosive parameters but they do not act by the same way. The overland flow alone tends to shear the soil horizontally and concentrates into rills. In the presence of rain, the soil particles are removed from the soil surface in the form of a uniform sheet layer. In addition to this, raindrops falling on the flow roughen the water and soil surface depending on the flow depth, and retard the velocity, therefore influence shear velocity and Manning’s factor. To investigate this part, agricultural sandy soil, rainfall simulator and a laboratory soil tray of 0.2x1x3 m were the base of this work. Five overland flow depths of 0; 3.28; 4.28; 5.16; 5.60; 5.80 mm were generated under a rainfall intensity of 217.2 mm/h. Sediment concentration control is based on the proportionality of depth/microtopography. The soil loose is directly related to the presence of rain splash on thin sheet flow. The effect of shear velocity on sediment concentration is limited by the value of 5.28 cm/s. In addition to this, the rain splash reduces the soil roughness by breaking the soil crests. The rainfall intensity is the major factor influencing depth and soil erosion. In the presence of rainfall, the shear velocity of the flow is due to two simultaneous effects. The first, which is horizontal, comes from the flow and the second, vertical, is due to the raindrops.

Physicochemical and Microbiological Properties of Kefir, Kefir Yogurt and Chickpea Yogurt

The consumption of functional foods is very common. For this reason, many products which are probiotic, prebiotic, energy reduced and fat reduced are developed. In this research, physicochemical and microbiological properties of functional kefir, kefir yogurt and chickpea yogurt were examined. For this purpose, pH values, titration acidities, viscosity values, water holding capacities, serum separation values, acetaldehyde contents, tyrosine contents, the count of aerobic mesophilic bacteria, lactic acid bacteria count and mold-yeast counts were determined. As a result of performed analysis, the differences between titration acidities, serum separation values, water holding capacities, acetaldehyde and tyrosine contents of samples were statistically significant (p < 0.05). There were no significant differences on pH values, viscosities, and microbiological properties of samples (p > 0.05). Consequently industrial production of functional kefir yogurt and chickpea yogurt may be advised.

The Effects of Distribution Channels on the Selling Prices of Hotels in Time of Crisis

Distribution channels play significant role for hotels. Direct and indirect selling options of hotel rooms have been increased especially with the help of new technologies, i.e. hotel’s own web sites and online booking sites. Although these options emerged as tools for diversifying the distribution channels, vast number of hotels -mostly resort hotels- is still heavily dependent upon international tour operators when selling their products. On the other hand, hotel sector is so vulnerable against crises. Economic, political or any other crisis can affect hotels very badly and so it is critical to have the right balance of distribution channel to avoid the adverse impacts of a crisis. In this study, it is aimed to search the impacts of a general crisis on the selling prices of hotels which have different weights of distribution channels. The study was done in Turkey where various crises occurred in 2015 and 2016 which had great negative impacts on Turkish tourism and led enormous occupancy rate and selling price reductions. 112 upscale resort hotel in Antalya, which is the most popular tourism destination of Turkey, joined to the research. According to the results, hotels with high dependency to international tour operators are more forced to reduce their room prices in crisis time compared to the ones which use their own web sites more. It was also found that the decline in room prices is limited for hotels which are working with national tour operators and travel agencies in crisis time.

Stress Analysis of Hexagonal Element for Precast Concrete Pavements

While the use of cast-in-place concrete for an airfield and highway pavement overlay is very common, the application of precast concrete elements is very limited today. The main reasons consist of high production costs and complex structural behavior. Despite that, several precast concrete systems have been developed and tested with the aim to provide a system with rapid construction. The contribution deals with the reinforcement design of a hexagonal element developed for a proposed airfield pavement system. The sub-base course of the system is composed of compacted recycled concrete aggregates and fiber reinforced concrete with recycled aggregates place on top of it. The selected element belongs to a group of precast concrete elements which are being considered for the construction of a surface course. Both high costs of full-scale experiments and the need to investigate various elements force to simulate their behavior in a numerical analysis software by using finite element method instead of performing expensive experiments. The simulation of the selected element was conducted on a nonlinear model in order to obtain such results which could fully compensate results from experiments. The main objective was to design reinforcement of the precast concrete element subject to quasi-static loading from airplanes with respect to geometrical imperfections, manufacturing imperfections, tensile stress in reinforcement, compressive stress in concrete and crack width. The obtained findings demonstrate that the position and the presence of imperfection in a pavement highly affect the stress distribution in the precast concrete element. The precast concrete element should be heavily reinforced to fulfill all the demands. Using under-reinforced concrete elements would lead to the formation of wide cracks and cracks permanently open.

Pre-Operative Tool for Facial-Post-Surgical Estimation and Detection

Goal: Purpose of the project was to make a plastic surgery prediction by using pre-operative images for the plastic surgeries’ patients and to show this prediction on a screen to compare between the current case and the appearance after the surgery. Methods: To this aim, we implemented a software which used data from the internet for facial skin diseases, skin burns, pre-and post-images for plastic surgeries then the post- surgical prediction is done by using K-nearest neighbor (KNN). So we designed and fabricated a smart mirror divided into two parts a screen and a reflective mirror so patient's pre- and post-appearance will be showed at the same time. Results: We worked on some skin diseases like vitiligo, skin burns and wrinkles. We classified the three degrees of burns using KNN classifier with accuracy 60%. We also succeeded in segmenting the area of vitiligo. Our future work will include working on more skin diseases, classify them and give a prediction for the look after the surgery. Also we will go deeper into facial deformities and plastic surgeries like nose reshaping and face slim down. Conclusion: Our project will give a prediction relates strongly to the real look after surgery and decrease different diagnoses among doctors. Significance: The mirror may have broad societal appeal as it will make the distance between patient's satisfaction and the medical standards smaller.

Effect of Architecture and Operating Conditions of Vehicle on Bulb Lifetime in Automotive

Automotive lighting is the leading function in the configuration of vehicle architecture. Especially headlights and taillights from external lighting functions are among the structures that determine the stylistic character of the vehicle. At the same time, the fact that lighting functions are related to many other functions brings along difficulties in design. Customers expect maximum quality from the vehicle. In these circumstances, it is necessary to make designs that aim to keep the performance of bulbs with limited working lives at the highest level. With this study, the factors that influence the working lives of filament lamps were examined and bulb explosions that can occur sooner than anticipated in the future were prevented while the vehicle was still in the design phase by determining the relations with electrical, dynamical and static variables. Especially the filaments of the bulbs used in the front lighting of the vehicle are deformed in a shorter time due to the high voltage requirement. In addition to this, rear lighting lamps vibrate as a result of the tailgate opening and closing and cause the filaments to be exposed to high stress. With this study, the findings that cause bulb explosions were evaluated. Among the most important findings: 1. The structure of the cables to the lighting functions of the vehicle and the effect of the voltage values are drawn; 2. The effect of the vibration to bulb throughout the life of the vehicle; 3 The effect of the loads carried to bulb while the vehicle doors are opened and closed. At the end of the study, the maximum performance was established in the bulb lifetimes with the optimum changes made in the vehicle architecture based on the findings obtained.

Multi-Scale Urban Spatial Evolution Analysis Based on Space Syntax: A Case Study in Modern Yangzhou, China

The exploration of urban spatial evolution is an important part of urban development research. Therefore, the evolutionary modern Yangzhou urban spatial texture was taken as the research object, and Spatial Syntax was used as the main research tool, this paper explored Yangzhou spatial evolution law and its driving factors from the urban street network scale, district scale and street scale. The study has concluded that at the urban scale, Yangzhou urban spatial evolution is the result of a variety of causes, including physical and geographical condition, policy and planning factors, and traffic conditions, and the evolution of space also has an impact on social, economic, environmental and cultural factors. At the district and street scales, changes in space will have a profound influence on the history of the city and the activities of people. At the end of the article, the matters needing attention during the evolution of urban space were summarized.

Numerical Study of the Influence of the Primary Stream Pressure on the Performance of the Ejector Refrigeration System Based on Heat Exchanger Modeling

Numerical models of the heat exchangers in ejector refrigeration system (ERS) were developed and validated with the experimental data. The models were based on the switched heat exchangers model using the moving boundary method, which were capable of estimating the zones’ lengths, the outlet temperatures of both sides and the heat loads at various experimental points. The developed models were utilized to investigate the influence of the primary flow pressure on the performance of an R245fa ERS based on its coefficient of performance (COP) and exergy efficiency. It was illustrated numerically and proved experimentally that increasing the primary flow pressure slightly reduces the COP while the exergy efficiency goes through a maximum before decreasing.

Reducing Later Life Loneliness: A Systematic Literature Review of Loneliness Interventions

Later life loneliness is a social issue that is increasing alongside an upward global population trend. As a society, one way that we have responded to this social challenge is through developing non-pharmacological interventions such as befriending services, activity clubs, meet-ups, etc. Through a systematic literature review, this paper suggests that currently there is an underrepresentation of radical innovation, and underutilization of digital technologies in developing loneliness interventions for older adults. This paper examines intervention studies that were published in English language, within peer reviewed journals between January 2005 and December 2014 across 4 electronic databases. In addition to academic databases, interventions found in grey literature in the form of websites, blogs, and Twitter were also included in the overall review. This approach yielded 129 interventions that were included in the study. A systematic approach allowed the minimization of any bias dictating the selection of interventions to study. A coding strategy based on a pattern analysis approach was devised to be able to compare and contrast the loneliness interventions. Firstly, interventions were categorized on the basis of their objective to identify whether they were preventative, supportive, or remedial in nature. Secondly, depending on their scope, they were categorized as one-to-one, community-based, or group based. It was also ascertained whether interventions represented an improvement, an incremental innovation, a major advance or a radical departure, in comparison to the most basic form of a loneliness intervention. Finally, interventions were also assessed on the basis of the extent to which they utilized digital technologies. Individual visualizations representing the four levels of coding were created for each intervention, followed by an aggregated visual to facilitate analysis. To keep the inquiry within scope and to present a coherent view of the findings, the analysis was primarily concerned the level of innovation, and the use of digital technologies. This analysis highlights a weak but positive correlation between the level of innovation and the use of digital technologies in designing and deploying loneliness interventions, and also emphasizes how certain existing interventions could be tweaked to enable their migration from representing incremental innovation to radical innovation for example. This analysis also points out the value of including grey literature, especially from Twitter, in systematic literature reviews to get a contemporary view of latest work in the area under investigation.

An Improved Adaptive Dot-Shape Beamforming Algorithm Research on Frequency Diverse Array

Frequency diverse array (FDA) beamforming is a technology developed in recent years, and its antenna pattern has a unique angle-distance-dependent characteristic. However, the beam is always required to have strong concentration, high resolution and low sidelobe level to form the point-to-point interference in the concentrated set. In order to eliminate the angle-distance coupling of the traditional FDA and to make the beam energy more concentrated, this paper adopts a multi-carrier FDA structure based on proposed power exponential frequency offset to improve the array structure and frequency offset of the traditional FDA. The simulation results show that the beam pattern of the array can form a dot-shape beam with more concentrated energy, and its resolution and sidelobe level performance are improved. However, the covariance matrix of the signal in the traditional adaptive beamforming algorithm is estimated by the finite-time snapshot data. When the number of snapshots is limited, the algorithm has an underestimation problem, which leads to the estimation error of the covariance matrix to cause beam distortion, so that the output pattern cannot form a dot-shape beam. And it also has main lobe deviation and high sidelobe level problems in the case of limited snapshot. Aiming at these problems, an adaptive beamforming technique based on exponential correction for multi-carrier FDA is proposed to improve beamforming robustness. The steps are as follows: first, the beamforming of the multi-carrier FDA is formed under linear constrained minimum variance (LCMV) criteria. Then the eigenvalue decomposition of the covariance matrix is ​​performed to obtain the diagonal matrix composed of the interference subspace, the noise subspace and the corresponding eigenvalues. Finally, the correction index is introduced to exponentially correct the small eigenvalues ​​of the noise subspace, improve the divergence of small eigenvalues ​​in the noise subspace, and improve the performance of beamforming. The theoretical analysis and simulation results show that the proposed algorithm can make the multi-carrier FDA form a dot-shape beam at limited snapshots, reduce the sidelobe level, improve the robustness of beamforming, and have better performance.

An Improved Total Variation Regularization Method for Denoising Magnetocardiography

The application of magnetocardiography signals to detect cardiac electrical function is a new technology developed in recent years. The magnetocardiography signal is detected with Superconducting Quantum Interference Devices (SQUID) and has considerable advantages over electrocardiography (ECG). It is difficult to extract Magnetocardiography (MCG) signal which is buried in the noise, which is a critical issue to be resolved in cardiac monitoring system and MCG applications. In order to remove the severe background noise, the Total Variation (TV) regularization method is proposed to denoise MCG signal. The approach transforms the denoising problem into a minimization optimization problem and the Majorization-minimization algorithm is applied to iteratively solve the minimization problem. However, traditional TV regularization method tends to cause step effect and lacks constraint adaptability. In this paper, an improved TV regularization method for denoising MCG signal is proposed to improve the denoising precision. The improvement of this method is mainly divided into three parts. First, high-order TV is applied to reduce the step effect, and the corresponding second derivative matrix is used to substitute the first order. Then, the positions of the non-zero elements in the second order derivative matrix are determined based on the peak positions that are detected by the detection window. Finally, adaptive constraint parameters are defined to eliminate noises and preserve signal peak characteristics. Theoretical analysis and experimental results show that this algorithm can effectively improve the output signal-to-noise ratio and has superior performance.

Monte Carlo Estimation of Heteroscedasticity and Periodicity Effects in a Panel Data Regression Model

This research attempts to investigate the effects of heteroscedasticity and periodicity in a Panel Data Regression Model (PDRM) by extending previous works on balanced panel data estimation within the context of fitting PDRM for Banks audit fee. The estimation of such model was achieved through the derivation of Joint Lagrange Multiplier (LM) test for homoscedasticity and zero-serial correlation, a conditional LM test for zero serial correlation given heteroscedasticity of varying degrees as well as conditional LM test for homoscedasticity given first order positive serial correlation via a two-way error component model. Monte Carlo simulations were carried out for 81 different variations, of which its design assumed a uniform distribution under a linear heteroscedasticity function. Each of the variation was iterated 1000 times and the assessment of the three estimators considered are based on Variance, Absolute bias (ABIAS), Mean square error (MSE) and the Root Mean Square (RMSE) of parameters estimates. Eighteen different models at different specified conditions were fitted, and the best-fitted model is that of within estimator when heteroscedasticity is severe at either zero or positive serial correlation value. LM test results showed that the tests have good size and power as all the three tests are significant at 5% for the specified linear form of heteroscedasticity function which established the facts that Banks operations are severely heteroscedastic in nature with little or no periodicity effects.

Research Trends on Magnetic Graphene for Water Treatment: A Bibliometric Analysis

Magnetic graphene has received widespread attention for their capability of water and wastewater treatment, which has been attracted many researchers in this field. A bibliometric analysis based on the Web of Science database was employed to analyze the global scientific outputs of magnetic graphene for water treatment until the present time (2012 to 2017), to improve the understanding of the research trends. The publication year, place of publication, institutes, funding agencies, journals, most cited articles, distribution outputs in thematic categories and applications were analyzed. Three major aspects analyzed including type of pollutant, treatment process and composite composition have further contributed to revealing the research trends. The most relevant research aspects of the main technologies using magnetic graphene for water treatment were summarized in this paper. The results showed that research on magnetic graphene for water treatment goes through a period of decline that might be related to a saturated field and a lack of bibliometric studies. Thus, the result of the present work will lead researchers to establish future directions in further studies using magnetic graphene for water treatment.

Corporate Governance Mechanisms, Whistle-Blowing Policy and Earnings Management Practices of Firms in Malaysia

This study examines whether corporate governance (CG) mechanisms in firms that have a whistle-blowing policy (WHBLP) are more effective in constraining earnings management (EM), than those without. A sample of 288 Malaysian firms for the years 2013 to 2015, amounting to 864 firm-years were grouped into firms with and without WHBLP. Results show that for firms without WHBLP, the board chairman tenure would minimize EM activities. Meanwhile, for firms with WHBLP, board chairman independence, board chairman tenure, audit committee size, audit committee meeting and women in the audit committees are found to be associated with less EM activities. Further, it is found that ownership concentration and Big 4 auditing firms help to reduce EM activities in firms with WHBLP, while not in firms without WHBLP. Hence, functional and effective governance can be achieved by having a WHBLP, which is in line with agency and resource dependent theories. Therefore, this study suggests that firms should have a WHBLP in place, and policymakers should come up with enhanced criteria to strengthen the mechanisms of WHBLP.

Weak Instability in Direct Integration Methods for Structural Dynamics

Three structure-dependent integration methods have been developed for solving equations of motion, which are second-order ordinary differential equations, for structural dynamics and earthquake engineering applications. Although they generally have the same numerical properties, such as explicit formulation, unconditional stability and second-order accuracy, a different performance is found in solving the free vibration response to either linear elastic or nonlinear systems with high frequency modes. The root cause of this different performance in the free vibration responses is analytically explored herein. As a result, it is verified that a weak instability is responsible for the different performance of the integration methods. In general, a weak instability will result in an inaccurate solution or even numerical instability in the free vibration responses of high frequency modes. As a result, a weak instability must be prohibited for time integration methods.

A Study on the Factors Affecting Student Behavior Intention to Attend Robotics Courses at the Primary and Secondary School Levels

In order to explore the key factors affecting the robot program learning intention of school students, this study takes the technology acceptance model as the theoretical basis and invites 167 students from Jiading District of Shanghai as the research subjects. In the robot course, the model of school students on their learning behavior is constructed. By verifying the causal path relationship between variables, it is concluded that teachers can enhance students’ perceptual usefulness to robotics courses by enhancing subjective norms, entertainment perception, and reducing technical anxiety, such as focusing on the gradual progress of programming and analyzing learner characteristics. Students can improve perceived ease of use by enhancing self-efficacy. At the same time, robot hardware designers can optimize in terms of entertainment and interactivity, which will directly or indirectly increase the learning intention of the robot course. By changing these factors, the learning behavior of primary and secondary school students can be more sustainable.

Synthesis and in vitro Characterization of a Gel-Derived SiO2-CaO-P2O5-SrO-Li2O Bioactive Glass

Bioactive glasses (BGs) are a group of surface-reactive biomaterials used in clinical applications as implants or filler materials in the human body to repair and replace diseased or damaged bone. Sol-gel technique was employed to prepare a SiO2-CaO-P2O5 glass with nominal composition of 58S BG with the addition of Sr and Li modifiers which imparts special properties to the BG. The effect of simultaneous addition of Sr and Li on bioactivity and biocompatibility, proliferation, alkaline phosphatase (ALP) activity of osteoblast cell line MC3T3-E1 and antibacterial property against methicillin-resistant Staphylococcus aureus (MRSA) bacteria were examined. BGs were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy before and after soaking the samples in the simulated body fluid (SBF) for different time intervals to characterize the formation of hydroxyapatite (HA) formed on the surface of BGs. Structural characterization indicated that the simultaneous presence of 5% Sr and 5% Li in 58S-BG composition not only did not retard HA formation because of opposite effect of Sr and Li of the dissolution of BG in the SBF but also, stimulated the differentiation and proliferation of MC3T3-E1s. Moreover, the presence of Sr and Li on dissolution of the ions resulted in an increase in the mean number of DAPI-labeled nuclei which was in good agreement with live/dead assay. The result of antibacterial tests revealed that Sr and Li-substituted 58S BG exhibited a potential antibacterial effect against MRSA bacteria. Because of optimal proliferation and ALP activity of MC3T3-E1cells, proper bioactivity and high antibacterial potential against MRSA, BG-5/5 is suggested as a multifunctional candidate for bone tissue engineering.

Comparative Study of Calcium Content on in vitro Biological and Antibacterial Properties of Silicon-Based Bioglass

The major aim of this study was to evaluate the effect of CaO content on in vitro hydroxyapatite formation, MC3T3 cells cytotoxicity and proliferation as well as antibacterial efficiency of sol-gel derived SiO2–CaO–P2O5 ternary system. For this purpose, first two grades of bioactive glass (BG); BG-58s (mol%: 60%SiO2–36%CaO–4%P2O5) and BG-68s (mol%: 70%SiO2–26%CaO–4%P2O5)) were synthesized by sol-gel method. Second, the effect of CaO content in their composition on in vitro bioactivity was investigated by soaking the BG-58s and BG-68s powders in simulated body fluid (SBF) for time periods up to 14 days and followed by characterization inductively coupled plasma atomic emission spectrometry (ICP-AES), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM) techniques. Additionally, live/dead staining, 3-(4,5dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), and alkaline phosphatase (ALP) activity assays were conducted respectively, as qualitatively and quantitatively assess for cell viability, proliferation and differentiations of MC3T3 cells in presence of 58s and 68s BGs. Results showed that BG-58s with higher CaO content showed higher in vitro bioactivity with respect to BG-68s. Moreover, the dissolution rate was inversely proportional to oxygen density of the BG. Live/dead assay revealed that both 58s and 68s increased the mean number live cells which were in good accordance with MTT assay. Furthermore, BG-58s showed more potential antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA) bacteria. Taken together, BG-58s with enhanced MC3T3 cells proliferation and ALP activity, acceptable bioactivity and significant high antibacterial effect against MRSA bacteria is suggested as a suitable candidate in order to further functionalizing for delivery of therapeutic ions and growth factors in bone tissue engineering.

‘Daily Speaking’: Designing an App for Construction of Language Learning Model Supporting ‘Seamless Flipped’ Environment

Seamless learning is becoming a research hotspot in recent years, and the emerging of micro-lectures, flipped classroom has strengthened the development of seamless learning. Based on the characteristics of the seamless learning across time and space and the course structure of the flipped classroom, and the theories of language learning, we put forward the language learning model which can support ‘seamless flipped’ environment (abbreviated as ‘S-F’). Meanwhile, the characteristics of the ‘S-F’ learning environment, the corresponding framework construction and the activity design of diversified corpora were introduced. Moreover, a language learning app named ‘Daily Speaking’ was developed to facilitate the practice of the language learning model in ‘S-F’ environment. In virtue of the learning case of Shanghai language, the rationality and feasibility of this framework were examined, expecting to provide a reference for the design of ‘S-F’ learning in different situations.

The Participation of Refugee Children with Disabilities in Educational Options in Turkey: A Systematic Review

Turkey, due to its geographic location, finds itself the world’s largest host to refugees worldwide, and this nation has done much to educate their refugee population. Turkey’s considerable experience can inform other nations educating refugee children. This systematic review of the literature examined the context, barriers, and responses to successfully educating refugee children in Turkey. Additionally, because some refugee children may have an identified or unidentified disability, the educational experiences of refugee children with disabilities in Turkey were an ancillary focus. Results indicated that while some educational challenges have been successfully met within Turkey, others remain. Additionally, the education of children with disabilities in Turkey is largely unexamined.