Implementation of Security Algorithms for u-Health Monitoring System

Data security in u-Health system can be an important issue because wireless network is vulnerable to hacking. However, it is not easy to implement a proper security algorithm in an embedded u-health monitoring because of hardware constraints such as low performance, power consumption and limited memory size and etc. To secure data that contain personal and biosignal information, we implemented several security algorithms such as Blowfish, data encryption standard (DES), advanced encryption standard (AES) and Rivest Cipher 4 (RC4) for our u-Health monitoring system and the results were successful. Under the same experimental conditions, we compared these algorithms. RC4 had the fastest execution time. Memory usage was the most efficient for DES. However, considering performance and safety capability, however, we concluded that AES was the most appropriate algorithm for a personal u-Health monitoring system.

Government Initiatives: The Missing Key for E-commerce Growth in KSA

This paper explores the issues that influence online retailing in Saudi Arabia. Retailers in Saudi Arabia have been reserved in their adoption of electronically delivered aspects of their business. Despite the fact that Saudi Arabia has the largest and fastest growth of ICT marketplaces in the Arab region, e-commerce activities are not progressing at the same speed. Only very few Saudi companies, mostly medium and large companies from the manufacturing sector, are involved in e-commerce implementation. Based on qualitative data collected by conducting interviews with 16 retailers and 16 potential customers in Saudi Arabia, several factors influencing online retailing diffusion in Saudi Arabia are identified. However, government support comes the highest and most influencing factor for online retailing growth as identified by both parties; retailers and potential customers in Saudi Arabia.

Justification and Classification of Issues for the Selection and Implementation of Advanced Manufacturing Technologies

It has often been said that the strength of any country resides in the strength of its industrial sector, and Progress in industrial society has been accomplished by the creation of new technologies. Developments have been facilitated by the increasing availability of advanced manufacturing technology (AMT), in addition the implementation of advanced manufacturing technology (AMT) requires careful planning at all levels of the organization to ensure that the implementation will achieve the intended goals. Justification and implementation of advanced manufacturing technology (AMT) involves decisions that are crucial for the practitioners regarding the survival of business in the present days of uncertain manufacturing world. This paper assists the industrial managers to consider all the important criteria for success AMT implementation, when purchasing new technology. Concurrently, this paper classifies the tangible benefits of a technology that are evaluated by addressing both cost and time dimensions, and the intangible benefits are evaluated by addressing technological, strategic, social and human issues to identify and create awareness of the essential elements in the AMT implementation process and identify the necessary actions before implementing AMT.

Requirements Management as a Competitive Factor in the it Mid Tier Business Concerning the Implementation of Erp-Software

The success of IT-projects concerning the implementation of business application Software is strongly depending upon the application of an efficient requirements management, to understand the business requirements and to realize them in the IT. But in fact, the Potentials of the requirements management are not fully exhausted by small and medium sized enterprises (SME) of the IT sector. To work out recommendations for action and furthermore a possible solution, allowing a better exhaust of potentials, it shall be examined in a scientific research project, which problems occur out of which causes. In the same place, the storage of knowledge from the requirements management, and its later reuse are important, to achieve sustainable improvements of the competitive of the IT-SMEs. Requirements Engineering is one of the most important topics in Product Management for Software to achieve the goal of optimizing the success of the software product.

On the Mathematical Structure and Algorithmic Implementation of Biochemical Network Models

Modeling and simulation of biochemical reactions is of great interest in the context of system biology. The central dogma of this re-emerging area states that it is system dynamics and organizing principles of complex biological phenomena that give rise to functioning and function of cells. Cell functions, such as growth, division, differentiation and apoptosis are temporal processes, that can be understood if they are treated as dynamic systems. System biology focuses on an understanding of functional activity from a system-wide perspective and, consequently, it is defined by two hey questions: (i) how do the components within a cell interact, so as to bring about its structure and functioning? (ii) How do cells interact, so as to develop and maintain higher levels of organization and functions? In recent years, wet-lab biologists embraced mathematical modeling and simulation as two essential means toward answering the above questions. The credo of dynamics system theory is that the behavior of a biological system is given by the temporal evolution of its state. Our understanding of the time behavior of a biological system can be measured by the extent to which a simulation mimics the real behavior of that system. Deviations of a simulation indicate either limitations or errors in our knowledge. The aim of this paper is to summarize and review the main conceptual frameworks in which models of biochemical networks can be developed. In particular, we review the stochastic molecular modelling approaches, by reporting the principal conceptualizations suggested by A. A. Markov, P. Langevin, A. Fokker, M. Planck, D. T. Gillespie, N. G. van Kampfen, and recently by D. Wilkinson, O. Wolkenhauer, P. S. Jöberg and by the author.

Segmenting Ultrasound B-Mode Images Using RiIG Distributions and Stochastic Optimization

In this paper, we propose a novel algorithm for delineating the endocardial wall from a human heart ultrasound scan. We assume that the gray levels in the ultrasound images are independent and identically distributed random variables with different Rician Inverse Gaussian (RiIG) distributions. Both synthetic and real clinical data will be used for testing the algorithm. Algorithm performance will be evaluated using the expert radiologist evaluation of a soft copy of an ultrasound scan during the scanning process and secondly, doctor’s conclusion after going through a printed copy of the same scan. Successful implementation of this algorithm should make it possible to differentiate normal from abnormal soft tissue and help disease identification, what stage the disease is in and how best to treat the patient. We hope that an automated system that uses this algorithm will be useful in public hospitals especially in Third World countries where problems such as shortage of skilled radiologists and shortage of ultrasound machines are common. These public hospitals are usually the first and last stop for most patients in these countries.

LAYMOD; A Layered and Modular Platform for CAx Collaboration Management and Supporting Product data Integration based on STEP Standard

Nowadays companies strive to survive in a competitive global environment. To speed up product development/modifications, it is suggested to adopt a collaborative product development approach. However, despite the advantages of new IT improvements still many CAx systems work separately and locally. Collaborative design and manufacture requires a product information model that supports related CAx product data models. To solve this problem many solutions are proposed, which the most successful one is adopting the STEP standard as a product data model to develop a collaborative CAx platform. However, the improvement of the STEP-s Application Protocols (APs) over the time, huge number of STEP AP-s and cc-s, the high costs of implementation, costly process for conversion of older CAx software files to the STEP neutral file format; and lack of STEP knowledge, that usually slows down the implementation of the STEP standard in collaborative data exchange, management and integration should be considered. In this paper the requirements for a successful collaborative CAx system is discussed. The STEP standard capability for product data integration and its shortcomings as well as the dominant platforms for supporting CAx collaboration management and product data integration are reviewed. Finally a platform named LAYMOD to fulfil the requirements of CAx collaborative environment and integrating the product data is proposed. The platform is a layered platform to enable global collaboration among different CAx software packages/developers. It also adopts the STEP modular architecture and the XML data structures to enable collaboration between CAx software packages as well as overcoming the STEP standard limitations. The architecture and procedures of LAYMOD platform to manage collaboration and avoid contradicts in product data integration are introduced.

Artificial Visual Percepts for Image Understanding

Visual inputs are one of the key sources from which humans perceive the environment and 'understand' what is happening. Artificial systems perceive the visual inputs as digital images. The images need to be processed and analysed. Within the human brain, processing of visual inputs and subsequent development of perception is one of its major functionalities. In this paper we present part of our research project, which aims at the development of an artificial model for visual perception (or 'understanding') based on the human perceptive and cognitive systems. We propose a new model for perception from visual inputs and a way of understaning or interpreting images using the model. We demonstrate the implementation and use of the model with a real image data set.

An Agent Oriented Architecture to Supply Dynamic Document Generation in ERP Systems

One of the most important aspects expected from an ERP system is to mange user\administrator manual documents dynamically. Since an ERP package is frequently changed during its implementation in customer sites, it is often needed to add new documents and/or apply required changes to existing documents in order to cover new or changed capabilities. The worse is that since these changes occur continuously, the corresponding documents should be updated dynamically; otherwise, implementing the ERP package in the organization encounters serious risks. In this paper, we propose a new architecture which is based on the agent oriented vision and supplies the dynamic document generation expected from ERP systems using several independent but cooperative agents. Beside the dynamic document generation which is the main issue of this paper, the presented architecture will address some aspects of intelligence and learning capabilities existing in ERP.

Implementation of Response Surface Methodology using in Small Brown Rice Peeling Machine: Part I

Implementation of response surface methodology (RSM) was employed to study the effects of two factor (rubber clearance and round per minute) in brown rice peeling machine of The optimal BROKENS yield (19.02, average of three repeats),.The optimized composition derived from RSM regression was analyzed using Regression analysis and Analysis of Variance (ANOVA). At a significant level α = 0.05, the values of Regression coefficient, R 2 (adj)were 97.35 % and standard deviation were 1.09513. The independent variables are initial rubber clearance, and round per minute parameters namely. The investigating responses are final rubber clearance, and round per minute (RPM). The restriction of the optimization is the designated.

Simulated Annealing Application for Structural Optimization

Several methods are available for weight and shape optimization of structures, among which Evolutionary Structural Optimization (ESO) is one of the most widely used methods. In ESO, however, the optimization criterion is completely case-dependent. Moreover, only the improving solutions are accepted during the search. In this paper a Simulated Annealing (SA) algorithm is used for structural optimization problem. This algorithm differs from other random search methods by accepting non-improving solutions. The implementation of SA algorithm is done through reducing the number of finite element analyses (function evaluations). Computational results show that SA can efficiently and effectively solve such optimization problems within short search time.

Success Factors of Large Scale ERP Implementation in Thailand

The objectives of the study are to examine the determinants of ERP implementation success factors of ERP implementation. The result indicates that large scale ERP implementation success consist of eight factors: project management competence, knowledge sharing, ERP system quality , understanding, user involvement, business process re-engineering, top management support, organization readiness.

Secure and Failure Factors of e-Government Projects Implementation in Developing Country: A Study on the Implementation of Kingdom of Bahrain

The concept of e-government has begun to spread among countries. It is based on the use of information communication technology (ICT) to fully utilize government resources, as well as to provide government services to citizens, investors and foreigners. Critical factors are the factors that are determined by the senior management of each organization; the success or failure of the organization depends on the effective implementation of critical factors. These factors vary from one organization to another according to their activity, size and functions. It is very important that organizations identify them in order to avoid the risk of implementing initiatives that may fail to work, while simultaneously exploiting opportunities that may succeed in working. The main focus of this paper is to investigate the majority of critical success factors (CSFs) associated with the implementation of e-government projects. This study concentrates on both technical and nontechnical factors. This paper concludes by listing the majority of CSFs relating to successful e-government implementation in Bahrain.

Strip Decomposition Parallelization of Fast Direct Poisson Solver on a 3D Cartesian Staggered Grid

A strip domain decomposition parallel algorithm for fast direct Poisson solver is presented on a 3D Cartesian staggered grid. The parallel algorithm follows the principles of sequential algorithm for fast direct Poisson solver. Both Dirichlet and Neumann boundary conditions are addressed. Several test cases are likewise addressed in order to shed light on accuracy and efficiency in the strip domain parallelization algorithm. Actually the current implementation shows a very high efficiency when dealing with a large grid mesh up to 3.6 * 109 under massive parallel approach, which explicitly demonstrates that the proposed algorithm is ready for massive parallel computing.

A Novel Implementation of Application Specific Instruction-set Processor (ASIP) using Verilog

The general purpose processors that are used in embedded systems must support constraints like execution time, power consumption, code size and so on. On the other hand an Application Specific Instruction-set Processor (ASIP) has advantages in terms of power consumption, performance and flexibility. In this paper, a 16-bit Application Specific Instruction-set processor for the sensor data transfer is proposed. The designed processor architecture consists of on-chip transmitter and receiver modules along with the processing and controlling units to enable the data transmission and reception on a single die. The data transfer is accomplished with less number of instructions as compared with the general purpose processor. The ASIP core operates at a maximum clock frequency of 1.132GHz with a delay of 0.883ns and consumes 569.63mW power at an operating voltage of 1.2V. The ASIP is implemented in Verilog HDL using the Xilinx platform on Virtex4.

System Identification and Control the Azimuth Angle of the Platform of MLRS by PID Controller

This paper presents the system identification by physical-s law method and designs the controller for the Azimuth Angle Control of the Platform of the Multi-Launcher Rocket System (MLRS) by Root Locus technique. The plant mathematical model was approximated using MATLAB for simulation and analyze the system. The controller proposes the implementation of PID Controller using Programmable Logic Control (PLC) for control the plant. PID Controllers are widely applicable in industrial sectors and can be set up easily and operate optimally for enhanced productivity, improved quality and reduce maintenance requirement. The results from simulation and experiments show that the proposed a PID Controller to control the elevation angle that has superior control performance by the setting time less than 12 sec, the rise time less than 1.6 sec., and zero steady state. Furthermore, the system has a high over shoot that will be continue development.

Standardization and Adaption Requirements in Production System Transplants

As German companies roll out their standardized production systems to offshore manufacturing plants, they face the challenge of implementing them in different cultural environments. Studies show that the local adaptation is one of the key factors for a successful implementation. Thus the question arises of where the line between standardization and adaptation can be drawn. To answer this question the influence of culture on production systems is analysed in this paper. The culturally contingent components of production systems are identified. Also the contingency factors are classified according to their impact on the necessary adaptation changes and implementation effort. Culturally specific decision making, coordination, communication and motivation patterns require one-time changes in organizational and process design. The attitude towards rules requires more intense coaching and controlling. Lastly a framework is developed to depict standardization and adaption needs when transplanting production systems into different cultural environments.

Evaluation of Efficient CSI Based Channel Feedback Techniques for Adaptive MIMO-OFDM Systems

This paper explores the implementation of adaptive coding and modulation schemes for Multiple-Input Multiple-Output Orthogonal Frequency Division Multiplexing (MIMO-OFDM) feedback systems. Adaptive coding and modulation enables robust and spectrally-efficient transmission over time-varying channels. The basic premise is to estimate the channel at the receiver and feed this estimate back to the transmitter, so that the transmission scheme can be adapted relative to the channel characteristics. Two types of codebook based channel feedback techniques are used in this work. The longterm and short-term CSI at the transmitter is used for efficient channel utilization. OFDM is a powerful technique employed in communication systems suffering from frequency selectivity. Combined with multiple antennas at the transmitter and receiver, OFDM proves to be robust against delay spread. Moreover, it leads to significant data rates with improved bit error performance over links having only a single antenna at both the transmitter and receiver. The coded modulation increases the effective transmit power relative to uncoded variablerate variable-power MQAM performance for MIMO-OFDM feedback system. Hence proposed arrangement becomes an attractive approach to achieve enhanced spectral efficiency and improved error rate performance for next generation high speed wireless communication systems.

Mobile Learning Implementation: Students- Perceptions in UTP

Mobile Learning (M-Learning) is a new technology which is to enhance current learning practices and activities for all people especially students and academic practitioners UTP is currently, implemented two types of learning styles which are conventional and electronic learning. In order to improve current learning approaches, it is necessary for UTP to implement m-learning in UTP. This paper presents a study on the students- perceptions on mobile utilization in the learning practices in UTP. Besides, this paper also presents a survey that was conducted among 82 students from System Analysis and Design (SAD) course in UTP. The survey includes basic information of mobile devices that have been used by the students, opinions on current learning practices and also the opinions regarding the m-learning implementation in the current learning practices especially in SAD course. Based on the results of the survey, majority of the students are using the mobile devices that can support m-learning environment. Other than that, students also agreed that current learning practices are ineffective and they believe that m-learning utilization can improve the effectiveness of current learning practices.

Implementation of RSA Blind Signature on CryptO-0N2 Protocol

Blind Signature were introduced by Chaum. In this scheme, a signer can “sign” a document without knowing the document contain. This is particularly important in electronic voting. CryptO-0N2 is an electronic voting protocol which is development of CryptO-0N. During its development this protocol has not been furnished with the requirement of blind signature, so the choice of voters can be determined by counting center. In this paper will be presented of implementation of blind signature using RSA algorithm.