Quality Properties of Fermented Mugworts and Rapid Pattern Analysis of Their Volatile Flavor Components by Electric Nose Based On SAW (Surface Acoustic Wave) Sensor in GC System

The changes in quality properties and nutritional components in two fermented mugworts (Artemisia capillaries Thumberg, Artemisiaeasiaticae Nakai) were characterized followed by the rapid pattern analysis of volatile flavor compounds by Electric Nose based on SAW(Surface Acoustic Wave) sensor in GC system. There were remarkable decreases in the pH and small changes in the total soluble solids after fermentation. The L (lightness) and b (yellowness) values in Hunter's color system were shown to be decreased, whilst the a (redness) value was increased by fermentation. The HPLC analysis demonstrated that total amino acids were increased in quantity and the essential amino acids were contained higher in A. asiaticaeNakai than in A. capillaries Thumberg. While the total polyphenol contents were not affected by fermentation, the total sugar contents were dramatically decreased. Scopoletinwere highly abundant in A. capillarisThumberg, however, it was not detected in A. asiaticaeNakai. Volatile flavor compounds by Electric Nose showed that the intensity of several peaks were increased much and seven additional flavor peaks were newly produced after fermentation. The flavor differences of two mugworts were clearly distinguished from the image patterns of VaporPrintTM which indicate that the fermentation enables the two mugworts to have subtle flavor differences.

A PSO-based SSSC Controller for Improvement of Transient Stability Performance

The application of a Static Synchronous Series Compensator (SSSC) controller to improve the transient stability performance of a power system is thoroughly investigated in this paper. The design problem of SSSC controller is formulated as an optimization problem and Particle Swarm Optimization (PSO) Technique is employed to search for optimal controller parameters. By minimizing the time-domain based objective function, in which the deviation in the oscillatory rotor angle of the generator is involved; transient stability performance of the system is improved. The proposed controller is tested on a weakly connected power system subjected to different severe disturbances. The non-linear simulation results are presented to show the effectiveness of the proposed controller and its ability to provide efficient damping of low frequency oscillations. It is also observed that the proposed SSSC controller improves greatly the voltage profile of the system under severe disturbances.

A New Version of Annotation Method with a XML-based Knowledge Base

Machine-understandable data when strongly interlinked constitutes the basis for the SemanticWeb. Annotating web documents is one of the major techniques for creating metadata on the Web. Annotating websitexs defines the containing data in a form which is suitable for interpretation by machines. In this paper, we present a better and improved approach than previous [1] to annotate the texts of the websites depends on the knowledge base.

Using Fuzzy Controller in Induction Motor Speed Control with Constant Flux

Variable speed drives are growing and varying. Drives expanse depend on progress in different part of science like power system, microelectronic, control methods, and so on. Artificial intelligent contains hard computation and soft computation. Artificial intelligent has found high application in most nonlinear systems same as motors drive. Because it has intelligence like human but there are no sentimental against human like angriness and.... Artificial intelligent is used for various points like approximation, control, and monitoring. Because artificial intelligent techniques can use as controller for any system without requirement to system mathematical model, it has been used in electrical drive control. With this manner, efficiency and reliability of drives increase and volume, weight and cost of them decrease.

Analysis of Socio-Cultural Obstacles for Dissemination of Nanotechnology from Iran's Agricultural Experts Perspective

The main purpose of this research was to analyze Socio-Cultural obstacles of disseminating of nanotechnology in Iran's agricultural section. One hundred twenty eight out of a total of 190 researchers with different levels of expertise in and familiarity with nanotechnology were randomly selected and questionnaires completed by them. Face validity have been done by expert's suggestion and correction, reliability by using Cronbakh-Alpha formula. The results of a factor analysis showed variation for different factors. For cultural factors 19/475 percent, for management 13/139 percent, information factor 11/277 percent, production factor 9/703 percent, social factor 9/267 percent, and for attitude factor it became 8/947 percent. Also results indicated that socio-cultural factors were the most important obstacle for nanotechnology dissemination in agricultural section in Iran.

Role of Director's Philosophical Approach in Cinematographic Expression

The original idea for a feature film may come from a writer, director or a producer. Director is the person responsible for the creative aspects, both interpretive and technical, of a motion picture production in a film. Director may be shot discussing his project with his or her cowriters, members of production staff, and producer, and director may be shown selecting locales or constructing sets. All these activities provide, of course, ways of externalizing director-s ideas about the film. A director sometimes pushes both the film image and techniques of narration to new artistic limits, but main responsibility of director is take the spectator to an original opinion in his philosophical approach. Director tries to find an artistic angle in every scene and change screenplay into an effective story and sets his film on a spiritual and philosophical base.

Image Clustering Framework for BAVM Segmentation in 3DRA Images: Performance Analysis

Brain ArterioVenous Malformation (BAVM) is an abnormal tangle of brain blood vessels where arteries shunt directly into veins with no intervening capillary bed which causes high pressure and hemorrhage risk. The success of treatment by embolization in interventional neuroradiology is highly dependent on the accuracy of the vessels visualization. In this paper the performance of clustering techniques on vessel segmentation from 3- D rotational angiography (3DRA) images is investigated and a new technique of segmentation is proposed. This method consists in: preprocessing step of image enhancement, then K-Means (KM), Fuzzy C-Means (FCM) and Expectation Maximization (EM) clustering are used to separate vessel pixels from background and artery pixels from vein pixels when possible. A post processing step of removing false-alarm components is applied before constructing a three-dimensional volume of the vessels. The proposed method was tested on six datasets along with a medical assessment of an expert. Obtained results showed encouraging segmentations.

Application of Geographic Information Systems(GIS) in the History of Cartography

This paper discusses applications of a revolutionary information technology, Geographic Information Systems (GIS), in the field of the history of cartography by examples, including assessing accuracy of early maps, establishing a database of places and historical administrative units in history, integrating early maps in GIS or digital images, and analyzing social, political, and economic information related to production of early maps. GIS provides a new mean to evaluate the accuracy of early maps. Four basic steps using GIS for this type of study are discussed. In addition, several historical geographical information systems are introduced. These include China Historical Geographic Information Systems (CHGIS), the United States National Historical Geographic Information System (NHGIS), and the Great Britain Historical Geographical Information System. GIS also provides digital means to display and analyze the spatial information on the early maps or to layer them with modern spatial data. How GIS relational data structure may be used to analyze social, political, and economic information related to production of early maps is also discussed in this paper. Through discussion on these examples, this paper reveals value of GIS applications in this field.

Multi-threshold Approach for License Plate Recognition System

The objective of this paper is to propose an adaptive multi threshold for image segmentation precisely in object detection. Due to the different types of license plates being used, the requirement of an automatic LPR is rather different for each country. The proposed technique is applied on Malaysian LPR application. It is based on Multi Layer Perceptron trained by back propagation. The proposed adaptive threshold is introduced to find the optimum threshold values. The technique relies on the peak value from the graph of the number object versus specific range of threshold values. The proposed approach has improved the overall performance compared to current optimal threshold techniques. Further improvement on this method is in progress to accommodate real time system specification.

An Overview of Some High Order and Multi-Level Finite Difference Schemes in Computational Aeroacoustics

In this paper, we have combined some spatial derivatives with the optimised time derivative proposed by Tam and Webb in order to approximate the linear advection equation which is given by = 0. Ôêé Ôêé + Ôêé Ôêé x f t u These spatial derivatives are as follows: a standard 7-point 6 th -order central difference scheme (ST7), a standard 9-point 8 th -order central difference scheme (ST9) and optimised schemes designed by Tam and Webb, Lockard et al., Zingg et al., Zhuang and Chen, Bogey and Bailly. Thus, these seven different spatial derivatives have been coupled with the optimised time derivative to obtain seven different finite-difference schemes to approximate the linear advection equation. We have analysed the variation of the modified wavenumber and group velocity, both with respect to the exact wavenumber for each spatial derivative. The problems considered are the 1-D propagation of a Boxcar function, propagation of an initial disturbance consisting of a sine and Gaussian function and the propagation of a Gaussian profile. It is known that the choice of the cfl number affects the quality of results in terms of dissipation and dispersion characteristics. Based on the numerical experiments solved and numerical methods used to approximate the linear advection equation, it is observed in this work, that the quality of results is dependent on the choice of the cfl number, even for optimised numerical methods. The errors from the numerical results have been quantified into dispersion and dissipation using a technique devised by Takacs. Also, the quantity, Exponential Error for Low Dispersion and Low Dissipation, eeldld has been computed from the numerical results. Moreover, based on this work, it has been found that when the quantity, eeldld can be used as a measure of the total error. In particular, the total error is a minimum when the eeldld is a minimum.

An Unstructured Finite-volume Technique for Shallow-water Flows with Wetting and Drying Fronts

An unstructured finite volume numerical model is presented here for simulating shallow-water flows with wetting and drying fronts. The model is based on the Green-s theorem in combination with Chorin-s projection method. A 2nd-order upwind scheme coupled with a Least Square technique is used to handle convection terms. An Wetting and drying treatment is used in the present model to ensures the total mass conservation. To test it-s capacity and reliability, the present model is used to solve the Parabolic Bowl problem. We compare our numerical solutions with the corresponding analytical and existing standard numerical results. Excellent agreements are found in all the cases.

Design and Fabrication of a Low Cost Heart Monitor using Reflectance Photoplethysmogram

This paper presents a low cost design of heart beat monitoring device using reflectance mode PhotoPlethysmography (PPG). PPG is known for its simple construction, ease of use and cost effectiveness and can provide information about the changes in cardiac activity as well as aid in earlier non-invasive diagnostics. The proposed device is divided into three phases. First is the detection of pulses through the fingertip. The signal is then passed to the signal processing unit for the purpose of amplification, filtering and digitizing. Finally the heart rate is calculated and displayed on the computer using parallel port interface. The paper is concluded with prototyping of the device followed by verification procedure of the heartbeat signal obtained in laboratory setting.

Cloning and Expression of D-Threonine Aldolase from Ensifer arboris NBRC100383

D-erythro-cyclohexylserine (D chiral unnatural β-hydroxy amino acid expected for the synthesis of drug for AIDS treatment. To develop a continuous bioconversion system with whole cell biocatalyst of D-threonine aldolase (D genes for the D-erythro-CHS production, D-threonine aldolase gene was amplified from Ensifer arboris 100383 by direct PCR amplication using two degenerated oligonucleotide primers designed based on genomic sequence of Shinorhizobium meliloti Sequence analysis of the cloned DNA fragment revealed one open-reading frame of 1059 bp and 386 amino acids. This putative D-TA gene was cloned into NdeI and EcoRI (pEnsi His-tag sequence or BamHI (pEnsi-DTA[2]) sequence of the pET21(a) vector. The expression level of the cloned gene was extremely overexpressed by E. coli BL21(DE3) transformed with pEnsi-DTA[1] compared to E. coli BL21(DE3) transformed with pEnsi-DTA[2]. When the cells expressing the wild used for D-TA enzyme activity, 12 mM glycine was successfully detected in HPLC analysis. Moreover, the whole cells harbouring the recombinant D-TA was able to synthesize D-erythro of 0.6 mg/ml in a batch reaction.

The Impact of Local Decision-Making in Regional Development Schemes on the Achievement of Efficiency in EU Funds

European Union candidate status provides a strong motivation for decision-making in the candidate countries in shaping the regional development policy where there is an envisioned transfer of power from center to the periphery. The process of Europeanization anticipates the candidate countries configure their regional institutional templates in the context of the requirements of the European Union policies and introduces new instruments of incentive framework of enlargement to be employed in regional development schemes. It is observed that the contribution of the local actors to the decision making in the design of the allocation architectures enhances the efficiency of the funds and increases the positive effects of the projects funded under the regional development objectives. This study aims at exploring the performances of the three regional development grant schemes in Turkey, established and allocated under the pre-accession process with a special emphasis given to the roles of the national and local actors in decision-making for regional development. Efficiency analyses have been conducted using the DEA methodology which has proved to be a superior method in comparative efficiency and benchmarking measurements. The findings of this study as parallel to similar international studies, provides that the participation of the local actors to the decision-making in funding contributes both to the quality and the efficiency of the projects funded under the EU schemes.

Combination of Different Classifiers for Cardiac Arrhythmia Recognition

This paper describes a new supervised fusion (hybrid) electrocardiogram (ECG) classification solution consisting of a new QRS complex geometrical feature extraction as well as a new version of the learning vector quantization (LVQ) classification algorithm aimed for overcoming the stability-plasticity dilemma. Toward this objective, after detection and delineation of the major events of ECG signal via an appropriate algorithm, each QRS region and also its corresponding discrete wavelet transform (DWT) are supposed as virtual images and each of them is divided into eight polar sectors. Then, the curve length of each excerpted segment is calculated and is used as the element of the feature space. To increase the robustness of the proposed classification algorithm versus noise, artifacts and arrhythmic outliers, a fusion structure consisting of five different classifiers namely as Support Vector Machine (SVM), Modified Learning Vector Quantization (MLVQ) and three Multi Layer Perceptron-Back Propagation (MLP–BP) neural networks with different topologies were designed and implemented. The new proposed algorithm was applied to all 48 MIT–BIH Arrhythmia Database records (within–record analysis) and the discrimination power of the classifier in isolation of different beat types of each record was assessed and as the result, the average accuracy value Acc=98.51% was obtained. Also, the proposed method was applied to 6 number of arrhythmias (Normal, LBBB, RBBB, PVC, APB, PB) belonging to 20 different records of the aforementioned database (between– record analysis) and the average value of Acc=95.6% was achieved. To evaluate performance quality of the new proposed hybrid learning machine, the obtained results were compared with similar peer– reviewed studies in this area.

Weld Defect Detection in Industrial Radiography Based Digital Image Processing

Industrial radiography is a famous technique for the identification and evaluation of discontinuities, or defects, such as cracks, porosity and foreign inclusions found in welded joints. Although this technique has been well developed, improving both the inspection process and operating time, it does suffer from several drawbacks. The poor quality of radiographic images is due to the physical nature of radiography as well as small size of the defects and their poor orientation relatively to the size and thickness of the evaluated parts. Digital image processing techniques allow the interpretation of the image to be automated, avoiding the presence of human operators making the inspection system more reliable, reproducible and faster. This paper describes our attempt to develop and implement digital image processing algorithms for the purpose of automatic defect detection in radiographic images. Because of the complex nature of the considered images, and in order that the detected defect region represents the most accurately possible the real defect, the choice of global and local preprocessing and segmentation methods must be appropriated.

Efficient Web-Learning Collision Detection Tool on Five-Axis Machine

As networking has become popular, Web-learning tends to be a trend while designing a tool. Moreover, five-axis machining has been widely used in industry recently; however, it has potential axial table colliding problems. Thus this paper aims at proposing an efficient web-learning collision detection tool on five-axis machining. However, collision detection consumes heavy resource that few devices can support, thus this research uses a systematic approach based on web knowledge to detect collision. The methodologies include the kinematics analyses for five-axis motions, separating axis method for collision detection, and computer simulation for verification. The machine structure is modeled as STL format in CAD software. The input to the detection system is the g-code part program, which describes the tool motions to produce the part surface. This research produced a simulation program with C programming language and demonstrated a five-axis machining example with collision detection on web site. The system simulates the five-axis CNC motion for tool trajectory and detects for any collisions according to the input g-codes and also supports high-performance web service benefiting from C. The result shows that our method improves 4.5 time of computational efficiency, comparing to the conventional detection method.

Orbit Propagator and Geomagnetic Field Estimator for NanoSatellite: The ICUBE Mission

This research contribution is drafted to present the orbit design, orbit propagator and geomagnetic field estimator for the nanosatellites specifically for the upcoming CUBESAT, ICUBE-1 of the Institute of Space Technology (IST), Islamabad, Pakistan. The ICUBE mission is designed for the low earth orbit at the approximate height of 700KM. The presented research endeavor designs the Keplarian elements for ICUBE-1 orbit while incorporating the mission requirements and propagates the orbit using J2 perturbations, The attitude determination system of the ICUBE-1 consists of attitude determination sensors like magnetometer and sun sensor. The Geomagnetic field estimator is developed according to the model of International Geomagnetic Reference Field (IGRF) for comparing the magnetic field measurements by the magnetometer for attitude determination. The output of the propagator namely the Keplarians position and velocity vectors and the magnetic field vectors are compared and verified with the same scenario generated in the  Satellite Tool Kit (STK).

Hippocampus Segmentation using a Local Prior Model on its Boundary

Segmentation techniques based on Active Contour Models have been strongly benefited from the use of prior information during their evolution. Shape prior information is captured from a training set and is introduced in the optimization procedure to restrict the evolution into allowable shapes. In this way, the evolution converges onto regions even with weak boundaries. Although significant effort has been devoted on different ways of capturing and analyzing prior information, very little thought has been devoted on the way of combining image information with prior information. This paper focuses on a more natural way of incorporating the prior information in the level set framework. For proof of concept the method is applied on hippocampus segmentation in T1-MR images. Hippocampus segmentation is a very challenging task, due to the multivariate surrounding region and the missing boundary with the neighboring amygdala, whose intensities are identical. The proposed method, mimics the human segmentation way and thus shows enhancements in the segmentation accuracy.

Application of Wavelet Neural Networks in Optimization of Skeletal Buildings under Frequency Constraints

The main goal of the present work is to decrease the computational burden for optimum design of steel frames with frequency constraints using a new type of neural networks called Wavelet Neural Network. It is contested to train a suitable neural network for frequency approximation work as the analysis program. The combination of wavelet theory and Neural Networks (NN) has lead to the development of wavelet neural networks. Wavelet neural networks are feed-forward networks using wavelet as activation function. Wavelets are mathematical functions within suitable inner parameters, which help them to approximate arbitrary functions. WNN was used to predict the frequency of the structures. In WNN a RAtional function with Second order Poles (RASP) wavelet was used as a transfer function. It is shown that the convergence speed was faster than other neural networks. Also comparisons of WNN with the embedded Artificial Neural Network (ANN) and with approximate techniques and also with analytical solutions are available in the literature.