Square Printed Monopole Antenna for Wireless Applications

In this article design and optimization of square printed monopole antenna for wireless application is proposed. Theory of characteristics mode (TCM) is used for analysis of current modes on the antenna. TCM analysis shows that beveled ground plane improves the impedance bandwidth. The antenna operates over the frequency range from 1.860 GHz to 5 GHz for a VSWR ≤ 2, covering the GSM (1900-1990MHz), IMT-2000(1920-2170MHz), Bluetooth (2.400-2484 MHz) and lower band of ultrawideband (UWB). Stable radiation pattern shows minimal pulse distortion. The radiation pattern is omni-directional along the H-plane and figure of eight along the E-plane. Size of proposed antenna is 39 mm x 29 mm x 1.6mm. Antenna is simulated using CAD FEKO suite (6.2) using method of moment. A prototype antenna is fabricated using FR4 dielectric substrate with a dielectric constant of 4.4 and loss tangent of 0.02 to validate the simulated and measured results of the proposed antenna. Measured results are in good agreement with simulated results.

The Development of the Quality Management Processes for the Building and Environment of the Basic Education Schools

The objectives of this research was to design and develop a quality management of the school buildings and environment. A quantitative and qualitative mixed research methodology was used. The population sample included 14 directors of primary schools. Two research tools were used. The first research tool included an in-depth interview and questionnaire. The second research tool included the Quality Business Process and Quality Work Procedure, and a Key Performance Indicator of each activity. The statistics included mean and standard deviation. The findings for the development of a quality management process of buildings and environment administration of the basic schools consisted of one quality business process (QBP) and seven quality work processes (QWP). The result from the experts’ evaluation revealed that the process and implementation of quality management of the school buildings and environment has passed the inspection process with consensus. This implies that the process of quality management of the school buildings and environment is suitable for implementation. Moreover, the level of agreement in the feasibility of the implementation of this plan had the mean in the range of 0.64-1.00 which suggests the design of the new plan is acceptable.

Efficient Compact Micro DBD Plasma Reactor for Ozone Generation for Industrial Application in Liquid and Gas Phase Systems

Ozone is well known as a powerful, fast reacting oxidant. Ozone based processes produce no by-product residual as non-reacted ozone decomposes to molecular oxygen. Therefore an application of ozone is widely accepted as one of the main approaches for a Sustainable and Clean Technologies development. There are number of technologies which require ozone to be delivered to specific points of a production network or reactors construction. Due to space constraints, high reactivity and short life time of ozone the use of ozone generators even of a bench top scale is practically limited. This requires development of mini/micro scale ozone generator which can be directly incorporated into production units. Our report presents a feasibility study of a new micro scale rector for ozone generation (MROG). Data on MROG calibration and indigo decomposition at different operation conditions are presented. At selected operation conditions with residence time of 0.25 s the process of ozone generation is not limited by reaction rate and the amount of ozone produced is a function of power applied. It was shown that the MROG is capable to produce ozone at voltage level starting from 3.5kV with ozone concentration of 5.28*10-6 (mol/L) at 5kV. This is in line with data presented on numerical investigation for a MROG. It was shown that in compare to a conventional ozone generator, MROG has lower power consumption at low voltages and atmospheric pressure. The MROG construction makes it applicable for both submerged and dry systems. With a robust compact design MROG can be used as an integrated module for production lines of high complexity.

On the Fatigue Behavior of a Triphasic Composite

This paper presents the results of an experimental characterization of a glass fibre-epoxy composite. The behavior of the traditional two-phase composite has been compared with the one of a new three-phase composite where the epoxy matrix was modified by addition of a 3% weight fraction of montmorillonite nano-particles. Two different types of nano-clays, Cloisite® 30B and RXG7000, produced by Southern Clay Products Inc., have been considered. Three-point bending tests, both monotonic and cyclic, were carried out. A strong reduction of the ultimate flexural strength upon nano-modification has been observed in quasi-static tests. Fatigue tests yielded a smaller strength loss. In both quasi-static and fatigue tests a more pronounced tendency to delamination has been noticed in three-phase composites, especially in the case of 30B nano-clay, with respect to the standard two-phase glass fiber composite.

Challenges for Rural School Leaders in a Developing Context: The Case of Solomon Islands

Thirty-eight rural school leaders in Solomon Islands responded to a questionnaire aimed at identifying their perceptions of work challenges. The data analysis points to an overwhelming percentage of school leaders feeling they face multifaceted problems in their work settings, including such challenges as untrained teachers, lack of funding, limited learning and teaching resources, and land disputes. The latter in particular is beyond the school leader’s jurisdiction; addressing it needs urgent attention from the principal stakeholder(s). Such challenges, seemingly tangential to the business of schooling, inadvertently affect the provision of good-quality education. The findings demonstrate that contextual challenges raise questions about what powers leadership at school level has to deal with some of them. The suggestion is advanced for the significant place-conscious leadership development to help address some community and cultural challenges. Implications of this paper are likely to be relevant to other similar contexts in the Pacific region and beyond.

Obstacle and Collision Avoidance Control Laws of a Swarm of Boids

This paper proposes a new obstacle and collision avoidance control laws for a three-dimensional swarm of boids. The swarm exhibit collective emergent behaviors whilst avoiding the obstacles in the workspace. While flocking, animals group up in order to do various tasks and even a greater chance of evading predators. A generalized algorithms for attraction to the centroid, inter-individual swarm avoidance and obstacle avoidance is designed in this paper. We present a set of new continuous time-invariant velocity control laws is presented which is formulated via the Lyapunov-based control scheme. The control laws proposed in this paper also ensures practical stability of the system. The effectiveness of the proposed control laws is demonstrated via computer simulations  

Motion Planning and Control of a Swarm of Boids in a 3-Dimensional Space

In this paper, we propose a solution to the motion planning and control problem for a swarm of three-dimensional boids. The swarm exhibit collective emergent behaviors within the vicinity of the workspace. The capability of biological systems to autonomously maneuver, track and pursue evasive targets in a cluttered environment is vastly superior to any engineered system. It is considered an emergent behavior arising from simple rules that are followed by individuals and may not involve any central coordination. A generalized, yet scalable algorithm for attraction to the centroid and inter-individual swarm avoidance is proposed. We present a set of new continuous time-invariant velocity control laws, formulated via the Lyapunov-based control scheme for target attraction and collision avoidance. The controllers provide a collision-free trajectory. The control laws proposed in this paper also ensures practical stability of the system. The effectiveness of the control laws is demonstrated via computer simulations.

Tensile Behavior of Spheroidizing Heat Treated High Carbon Steel

Spheroidization heat treatment was conducted on the  SK85 high carbon steel sheets with various initial microstructures  obtained after cold rolling by various reduction ratios at a couple of  annealing temperatures. On the high carbon steel sheet with fine  pearlite microstructure, obtained by soaking at 800oC for 2hr in a box furnace and then annealing at 570oC for 5min in a salt bath furnace followed by water quenching, cold rolling was conducted by reduction ratios of 20, 30, and 40%. Heat treatment for spheroidization was carried out at 600 and 720oC for the various time intervals from 0.1 to 32 hrs. Area fraction of spheroidized cementite was measured with an image analyzer as a function of cold reduction ratios and duration times. Tensile tests were carried out at room temperature on the spheoidized high carbon steel.  

Hydrogen Production from Dehydrogenation of Ethanol over Ag-Based Catalysts

The development of alternative energy is interesting in the present especially, hydrogen production because it is an important energy resource in the future. This paper studied the hydrogen production from catalytic dehydrogenation of ethanol through via low temperature (

Environmental Sanitation Dilemma in the Tamale Metropolis, Ghana

The 21st century has been characterized by rapid urbanization with its associated environmental sanitation challenges especially in developing countries. However, studies have focused largely on institutional capacity and the resources needed to manage environmental sanitation challenges, with few insights on the attitudes of city residents. This paper analyzes the environmental sanitation situation in a rapidly urbanizing Tamale metropolis, examines how city residents’ attitudes have contributed to poor environmental sanitation and further reviews approaches that have been employed to manage environmental sanitation. Using secondary and empirical data sources, the paper reveals that only 7.5 tons of 150 tons of total daily solid wastes generated is effectively managed. The findings suggest that the poor sanitation in the city is influenced by two factors; poor attitudes of city residents and weak institutions. While poor attitudes towards environmental sanitation has resulted in indiscriminate disposal of waste, weak institutions have resulted in lack of capacity and pragmatic interventions to manage the environmental sanitation challenges in the city. The paper recommends public education on environmental sanitation, public private partnership, increased stakeholder engagement and preparation and implementation of environmental sanitation plan as mechanisms to ensure effective environmental sanitation management in the Tamale metropolis.

The Flexural Strength of Fiber-Reinforced Polymer Cement Mortars Using UM Resin

A polymer cement mortar (PCM) has been widely used  as the material of repair and restoration work for concrete structure;  however a PCM usually induces an environmental pollutant.  Therefore, there is a need to develop PCM which is less impact to  environments. Usually, UM resin is known to be harmless to the  environment. Accordingly, in this paper, the properties of the PCM  using UM resin were studied. The general cement mortar and UM  resin were mixed in the specified ratio. A certain percentage of PVA  fibers, steel fibers and mixed fibers (PVA fiber and steel fiber) were  added to enhance the flexural strength. The flexural tests were  performed in order to investigate the flexural strength of each PCM.  Experimental results showed that the strength of proposed PCM using  UM resin is improved when they are compared with general cement  mortar.  

Structural Analysis of Username Segment in E-Mail Addresses of Engineering Institutes of Gujarat State of India

E-mail has become a key mechanism of electronic communication. This is true for professional organizations that like to communicate with their subjects online and are slowly shifting to paper-less office. The current paper focuses specifically on academic institutions offering Engineering course in Gujarat state and attempts for textual analysis of the usernames of the institutional e-mail addresses. We found that the institutions tend to design the username segment of their e-mail addresses by choosing words or combination of words from specific categories. The paper also highlights the use of special characters, digits and random words in designing the usernames. On the sidelines, the paper lists the style of employing department names and designations for the design process. To the best of our knowledge, this is the first formal attempt to analyze the selection of words employed for designing username segment of e-mail addresses of engineering institutions.

Management by Sufficient Economy Philosophy for Hospitality Business in Samut Songkram

The objectives of this research are to know the management form of Samut Songkram lodging entrepreneurs with sufficient economy framework, to know the threat that affect this business and drawing the fit model for this province in order to sustain their business with Samut Songkram style. What will happen if they do not use this philosophy? Will they have a cash short fall? The data and information are collected by informal discussion with 8 managers and 400 questionnaires. We will use a mix of methods both qualitative research and quantitative research for our study. Bent Flyvbjerg’s phronesis is utilized for this analysis. Our research will prove that sufficient economy can help small and medium business firms solve their problems. We think that the results of our research will be a financial model to solve many problems of the entrepreneurs and this way will use to practice in other areas of our country. 

A Nanosensor System Based On Disuccinimydyl–CYP2E1 for Amperometric Detection of the Anti-Tuberculosis Drug, Pyrazinamide

Pyrazinamide (PZA) is among the first-line pro-drugs  in the tuberculosis (TB) combination chemotherapy used to treat  Mycobacterium tuberculosis. Numerous reports have suggested that  hepatotoxicity due to pyrazinamide in patients is due to inappropriate  dosing. It is, therefore necessary to develop sensitive and reliable  techniques for determining the PZA metabolic profile of diagnosed  patients promptly and at point-of-care. This study reports the  determination of PZA based on nanobiosensor systems developed  from disuccinimidyl octanedioate modified Cytochrome P450-2E1  (CYP2E1) electrodeposited on gold substrates derivatised with  (poly(8-anilino-1-napthalene sulphonic acid) PANSA/PVP-AgNPs  nanocomposites. The rapid and sensitive amperometric PZA  detection gave a dynamic linear range of 2µM to 16µM revealing a  limit of detection of 0.044µM and a sensitivity of 1.38µA/µM. The  Michaelis-Menten parameters; KM, KM app and IMAX were calculated to  be 6.0µM, 1.41µM and 1.51x10-6 A, respectively, indicating a  nanobiosensor suitable for use in serum.

A Universal Approach to Categorize Failures in Production

The increasing interconnectedness and complexity of  production processes raise the susceptibility of production systems to  failure. Therefore, the ability to respond quickly to failures is  increasingly becoming a competitive factor. The research project  "Sustainable failure management in manufacturing SMEs" is  developing a methodology to identify failures in the production and  select preventive and reactive measures in order to correct failures  and to establish sustainable failure management systems.  

Vibration and Operation Technical Consideration before Field Balance of Gas Turbine Utilities (In Iran Power Plants SIEMENS V94.2 Gas Turbines)

One of the most challenging times in operation of big industrial plant or utilities is the time that alert lamp of Bently Nevada connection in main board substation turn on and show the alert condition of machine. All of the maintenance groups usually make a lot of discussion with operation and together rather this alert signal is real or fake. This will be more challenging when condition monitoring vibrationdata shows 1X(X=current rotor frequency) in fast Fourier transform(FFT) and vibration phase trends show 90 degree shift between two non-contact probedirections with overall high radial amplitude amounts. In such situations, CM (condition monitoring) groups usually suspicious about unbalance in rotor. In this paper, four critical case histories related to SIEMENS V94.2 Gas Turbines in Iran power industry discussed in details. Furthermore, probe looseness and fake (unreal) trip in gas turbine power plants discussed. In addition, critical operation decision in alert condition in power plants discussed in details.

Stress Evaluation of Rotary Injector Pump Parts in MF285 Tractor Using Finite Element Method

Since fuel must be injected with appropriate pressure and time for accurate performance of diesel engines, then proper function of engine is influenced by accurate function of injector pump. At first total pump was designed by SolidWorks 2012 software. Then the total relationship of rotor, roller, internal cam ring, pole shoe and plunger in injector pump in MF285 tractor and their performance was shown. During suction state rollers connect with dents in internal cam ring and in pressure course pole shoes have drawer move in rotor and perform tappet action between rollers and plungers. The maximum stress was obtained by using analysis of finite element method. The maximum stress in contact surface of roller and internal cam ring and on roller surface. The maximum amount of this stress is 288.12 MPa. According to conducted analyses, the minimum value for safety factor is related to roller surface and it equals to 2.0477.

A Review of Genetic Algorithm Optimization: Operations and Applications to Water Pipeline Systems

Genetic Algorithm (GA) is a powerful technique for solving optimization problems. It follows the idea of survival of the fittest - Better and better solutions evolve from previous generations until a near optimal solution is obtained. GA uses the main three operations, the selection, crossover and mutation to produce new generations from the old ones. GA has been widely used to solve optimization problems in many applications such as traveling salesman problem, airport traffic control, information retrieval (IR), reactive power optimization, job shop scheduling, and hydraulics systems such as water pipeline systems. In water pipeline systems we need to achieve some goals optimally such as minimum cost of construction, minimum length of pipes and diameters, and the place of protection devices. GA shows high performance over the other optimization techniques, moreover, it is easy to implement and use. Also, it searches a limited number of solutions.

Controlling Transient Flow in Pipeline Systems by Desurging Tank with Automatic Air Control

Desurging tank with automatic air control “DTAAC” is a water hammer protection device, operates either an open or closed surge tank according to the water level inside the surge tank, with the volume of air trapped in the filling phase, this protection device has the advantages of its easy maintenance, and does not need to run any external energy source (air compressor). A computer program has been developed based on the characteristic method to simulate flow transient phenomena in pressurized water pipeline systems, it provides the influence of using the protection devices to control the adverse effects due to excessive and low pressure occurring in this phenomena. The developed model applied to a simple main water pipeline system: pump combined with DTAAC connected to a reservoir.  The results obtained provide that the model is an efficient tool for water hammer analysis. Moreover; using the DTAAC reduces the unfavorable effects of the transients.

Cementing Efficiency of Low Calcium Fly Ash in Fly Ash Concretes

Research on the utilization of fly ash will no longer refer the fly ash as a waste material of thermal power plants. Use of fly ash in concrete making, makes the concrete economical as well as durable. The fly ash is being added to the concrete in three ways namely, as partial replacement to cement, as partial replacement to fine aggregates and as admixture. Addition of fly ash to the concrete in any one of the form mentioned above, makes the concrete more workable and durable than the conventional concrete. Studies on fly ash as partial replacement to cement gained momentum as such replacement makes the concrete economical. In the present study, an attempt has been made to understand the effects of fly ash on the workability characteristics and strength aspects of fly ash concretes. In India major number of thermal power plants is producing low calcium fly ash. Hence in the present investigation low calcium fly ash has been used. Fly ash in concrete was considered for the partial replacement of cement. The percentage replacement of cement by fly ash varied from 0% to 40% at regular intervals of 10%. More over the fine aggregate to coarse aggregate ratio also has been varied as 1:1, 1:2 and 1:3. The workability tests revealed that up to 30% replacement of cement by fly ash in concrete mixes water demand for reduces, beyond 30% replacement of cement by fly ash demanded more water content for constant workability.