Evaluation of the Effects of Urban Planning Decisions on Commercial Function and Site Selection Decisions: Ümraniye - Alemdağ Street Pedestrianization Project

Metropolitan areas need urban transformation and urban renewal in terms of their internal Dynamics. Since 1980, the İstanbul Metropolitan area has been started to urban growth, while the population was increasing and it has brought together masses that have different lifestyles and cultures. Commercial and residential areas' spatial needs and decisions are affected by these different lifestyles. As the terms shopping mall and commercial Street became widespread, consumption trends had changed depending on the socio-economic characteristics of the people. Increase in demand for these areas, the number of shopping centers has increased, while the shopping streets started to be as effective as the shopping centers and have been pedestrianized. In this article, the change in commercial area site selection by the dynamics of the population will be examined in cities that diverged from spatial-temporal limitations. In the study, the analysis of multilayered data using geographic information systems (GIS) will be used as a method. With this method, a more synthesistic approach will be introduced with the collection editing, querying, and analysis of geographical data in computer-based systems. While conducting this analysis, Alemdağ Street in the Ümraniye district of İstanbul, where a pedestrian decision was made, will be based on and the change in the commercial and residential functions before and after the pedestrianization decision will be evaluated.

A Study to Evaluate the Effectiveness of Simulation on Anaesthetic Non-Technical Skills in the Management of Major Trauma Patients

Background: Dynamic, challenging instances during the management of major trauma patients requires optimal team intervention to ensure patient safety and effective crisis management. These factors highlight the importance of increased awareness in both technical and non-technical skills (NTS) training. Simulation based training (SBT) is an effective tool that replicates and teaches the required clinical skills, resulting in teamwork improvement, better patient safety, and care. Aims: This study investigates change in NTS, during the management of major trauma patients, using SBT. We also investigated the relationship between NTS performance and participation in previous NTS workshop (NTSW), years of experience, previous simulation (PS), previous exposure to major trauma patient management (MTPM) and group size. Methods: NTS behaviours were assessed by a single rater using previously validated framework for observing and rating Anaesthetists’ Non-Technical Skills (ANTS) for anaesthetists and Anaesthetic Non-Technical Skills for Anaesthetic Practitioners (ANTS-AP) for anaesthetic nurses during SBT. Two anaesthetists (one senior, one junior) together with one to four registered anaesthetic nurses formed 17 teams. The SBT consisted of 3 major trauma scenarios: 1) Major haemorrhage following multiple stab wounds to the torso, 2) Traumatic brain injury complicated by unanticipated difficult intubation, and 3) Penetrating neck injury with major haemorrhage, complicated by a failed intubation. The scores of each NTS category for each scenario are evaluated for significance in change and used to correlate whether NTS during the simulation were affected by previous NTSW, PS, previous exposure to MTPM and group size. Results: The resulting anaesthetists and anesthetic nurses’ p-values were < 0.05 indicating a significant improvement in all NTS resulting from score differences between scenarios 1 & 2 and 1 & 3. Anaesthetists’ NTS categories were not influenced by PS, previous NTSW, and exposure to MTPM. However, anaesthetic nurses NTS categories were influenced by PS, exposure to MTPM but not by NTSW. Conclusions: SBT has shown to be effective in improving the NTS for both anaesthetists and anaesthetic nurses. This enhances safety and team performance for MTPM. The impact of SBT in the clinical environment for patient management and safety warrants further research.

Challenges and Professional Perspectives for Pedagogy Undergraduates with Specific Learning Disability: A Greek Case Study

Specific learning disability (SLD) in higher education has been partially explored in Greece so far. Moreover, opinions on professional perspectives for university students with SLD, is scarcely encountered in Greek research. The perceptions of the hidden character of SLD along with the university policy towards it and professional perspectives that result from this policy have been examined in the present research. This study has applied the paradigm of a Greek Tertiary Pedagogical Education Department (Early Childhood Education). Via mixed methods, data have been collected from different groups of people in the Pedagogical Department: students with SLD and without SLD, academic staff and administration staff, all of which offer the opportunity for triangulation of the findings. Qualitative methods include ten interviews with students with SLD and 15 interviews with academic staff and 60 hours of observation of the students with SLD. Quantitative methods include 165 questionnaires completed by third and fourth-year students and five questionnaires completed by the administration staff. Thematic analyses of the interviews’ data and descriptive statistics on the questionnaires’ data have been applied for the processing of the results. The use of medical terms to define and understand SLD was common in the student cohort, regardless of them having an SLD diagnosis. However, this medical model approach is far more dominant in the group of students without SLD who, by majority, hold misconceptions on a definitional level. The academic staff group seems to be leaning towards a social approach concerning SLD. According to them, diagnoses may lead to social exclusion. The Pedagogical Department generally endorses the principles of inclusion and complies with the provision of oral exams for students with SLD. Nevertheless, in practice, there seems to be a lack of regular academic support for these students. When such support does exist, it is only through individual initiatives. With regards to their prospective profession, students with SLD can utilize their personal experience, as well as their empathy; these appear to be unique weapons in their hands –in comparison with other educators− when it comes to teaching students in the future. In the Department of Pedagogy, provision towards SLD results sporadic, however the vision of an inclusive department does exist. Based on their studies and their experience, pedagogy students with SLD claim that they have an experiential internalized advantage for their future career as educators.

Blended Learning through Google Classroom

This paper discusses that good learning involves all academic groups in the school. Blended learning is learning outside the classroom. Google Classroom is a free service learning app for schools, non-profit organizations and anyone with a personal Google account. Facilities accessed through computers and mobile phones are very useful for school teachers and students. Blended learning classrooms using both traditional and technology-based methods for teaching have become the norm for many educators. Using Google Classroom gives students access to online learning. Even if the teacher is not in the classroom, the teacher can provide learning. This is the supervision of the form of the teacher when the student is outside the school.

The Estimation of Bird Diversity Loss and Gain as an Impact of Oil Palm Plantation: Study Case in KJNP Estate Riau Province

The rapid growth of oil palm industry in Indonesia raised many negative accusations from various parties, who said that oil palm plantation is damaging the environment and biodiversity, including birds. Since research on oil palm plantation impacts on bird diversity is still limited, this study needs to be developed in order to gain further learning and understanding. Data on bird diversity were collected in March 2018 in KJNP Estate, Riau Province using strip transect method on five different land cover types (young, intermediate, and old growth of oil palm plantation, high conservation value area, and crops field or the baseline). The observations were conducted simultaneously, with three repetitions. The result shows that the baseline has 19 species of birds and land cover after the oil palm plantation has 39 species. HCV (high conservation value) area has the highest increase in diversity value. Oil palm plantation has changed the composition of bird species. The highest similarity index is shown by young growth oil palm land cover with total score 0.65, meanwhile the lowest similarity index with total score 0.43 is shown by HCV area. Overall, the existence of oil palm plantation made a positive impact by increasing bird species diversity, with total 23 species gained and 3 species lost.

Pilot Trial of Evidence-Based Integrative Group Therapy to Improve Executive Functioning among Adults: Implications for Community Mental Health and Training Clinics

Objective: Executive functioning (EF) deficits underlie several mental health diagnoses including ADHD, anxiety, and depression. Community mental health clinics face extensive waitlists for services with many referrals involving EF deficits. A pilot trial of a four-week group therapy was developed using key components from Cognitive-Behavioral Therapy (CBT), Dialectical Behavior Therapy (DBT), and mindfulness with an aim to improve EF skills and offer low-fee services. Method: Eight adults (M = 34.5) waiting for services at a community clinic were enrolled in a four-week group therapy at an in-house training clinic for doctoral trainees. Baseline EF, pre-/post-intervention ADHD and distress symptoms, group satisfaction, and curriculum helpfulness were assessed. Results: Downward trends in ADHD and distress symptoms pre/post-intervention were not significant. Favorable responses on group satisfaction and helpfulness suggest clinical utility. Conclusion: Preliminary pilot data from a brief group therapy to improve EF may be an efficacious, acceptable, and feasible intervention for adults waiting for services at community mental health and training clinics where there are high demands and limits to services and staffs.

A Review of Ultralightweight Mutual Authentication Protocols

Radio Frequency Identification (RFID) is one of the most commonly used technologies in IoTs and Wireless Sensor Networks which makes the devices identification and tracking extremely easy to manage. Since RFID uses wireless channel for communication, which is open for all types of adversaries, researchers have proposed many Ultralightweight Mutual Authentication Protocols (UMAPs) to ensure security and privacy in a cost-effective manner. These UMAPs involve simple bitwise logical operators such as XOR, AND, OR & Rot, etc., to design the protocol messages. However, most of these UMAPs were later reported to be vulnerable against many malicious attacks. In this paper, we have presented a detailed overview of some eminent UMAPs and also discussed the many security attacks on them. Finally, some recommendations and suggestions have been discussed, which can improve the design of the UMAPs.

Omni: Data Science Platform for Evaluate Performance of a LoRaWAN Network

Nowadays, physical processes are becoming digitized by the evolution of communication, sensing and storage technologies which promote the development of smart cities. The evolution of this technology has generated multiple challenges related to the generation of big data and the active participation of electronic devices in society. Thus, devices can send information that is captured and processed over large areas, but there is no guarantee that all the obtained data amount will be effectively stored and correctly persisted. Because, depending on the technology which is used, there are parameters that has huge influence on the full delivery of information. This article aims to characterize the project, currently under development, of a platform that based on data science will perform a performance and effectiveness evaluation of an industrial network that implements LoRaWAN technology considering its main parameters configuration relating these parameters to the information loss.

Voltage Sag Characteristics during Symmetrical and Asymmetrical Faults

Electrical faults in transmission and distribution networks can have great impact on the electrical equipment used. Fault effects depend on the characteristics of the fault as well as the network itself. It is important to anticipate the network’s behavior during faults when planning a new equipment installation, as well as troubleshooting. Moreover, working backwards, we could be able to estimate the characteristics of the fault when checking the perceived effects. Different transformer winding connections dominantly used in the Greek power transfer and distribution networks and the effects of 1-phase to neutral, phase-to-phase, 2-phases to neutral and 3-phase faults on different locations of the network were simulated in order to present voltage sag characteristics. The study was performed on a generic network with three steps down transformers on two voltage level buses (one 150 kV/20 kV transformer and two 20 kV/0.4 kV). We found that during faults, there are significant changes both on voltage magnitudes and on phase angles. The simulations and short-circuit analysis were performed using the PSCAD simulation package. This paper presents voltage characteristics calculated for the simulated network, with different approaches on the transformer winding connections during symmetrical and asymmetrical faults on various locations.

Simulation and Analysis of Polyetheretherketone Implants for Diaphysis Femur Fracture

In the present work, reverse engineering approach has been used to create a 3D model of a fractured femur diaphysis bone using the computed tomography (CT) scan data. Thereafter, a counter fit fixation plate of polyetheretherketone (PEEK) composite has been designed and analyzed considering static physiological loading conditions. Static stress distribution and deformation analysis of the plate have been performed. From the analysis, it has been found that the stresses and deformation developed are quite low. This implies that these designed fixation plates will be able to provide stable fixation and thus resulting in improved fracture union.

Analytical Authentication of Butter Using Fourier Transform Infrared Spectroscopy Coupled with Chemometrics

Fourier Transform Infrared (FT-IR) spectroscopy coupled with chemometrics was used to distinguish between butter samples and non-butter samples. Further, quantification of the content of margarine in adulterated butter samples was investigated. Fingerprinting region (1400-800 cm–1) was used to develop unsupervised pattern recognition (Principal Component Analysis, PCA), supervised modeling (Soft Independent Modelling by Class Analogy, SIMCA), classification (Partial Least Squares Discriminant Analysis, PLS-DA) and regression (Partial Least Squares Regression, PLS-R) models. PCA of the fingerprinting region shows a clustering of the two sample types. All samples were classified in their rightful class by SIMCA approach; however, nine adulterated samples (between 1% and 30% w/w of margarine) were classified as belonging both at the butter class and at the non-butter one. In the two-class PLS-DA model’s (R2 = 0.73, RMSEP, Root Mean Square Error of Prediction = 0.26% w/w) sensitivity was 71.4% and Positive Predictive Value (PPV) 100%. Its threshold was calculated at 7% w/w of margarine in adulterated butter samples. Finally, PLS-R model (R2 = 0.84, RMSEP = 16.54%) was developed. PLS-DA was a suitable classification tool and PLS-R a proper quantification approach. Results demonstrate that FT-IR spectroscopy combined with PLS-R can be used as a rapid, simple and safe method to identify pure butter samples from adulterated ones and to determine the grade of adulteration of margarine in butter samples.

Automatic Number Plate Recognition System Based on Deep Learning

In the last few years, Automatic Number Plate Recognition (ANPR) systems have become widely used in the safety, the security, and the commercial aspects. Forethought, several methods and techniques are computing to achieve the better levels in terms of accuracy and real time execution. This paper proposed a computer vision algorithm of Number Plate Localization (NPL) and Characters Segmentation (CS). In addition, it proposed an improved method in Optical Character Recognition (OCR) based on Deep Learning (DL) techniques. In order to identify the number of detected plate after NPL and CS steps, the Convolutional Neural Network (CNN) algorithm is proposed. A DL model is developed using four convolution layers, two layers of Maxpooling, and six layers of fully connected. The model was trained by number image database on the Jetson TX2 NVIDIA target. The accuracy result has achieved 95.84%.

Stress Distribution in Axisymmetric Indentation of an Elastic Layer-Substrate Body

We focus on internal stress and displacement of an elastic axisymmetric contact problem for indentation of a layer-substrate body. An elastic layer is assumed to be perfectly bonded to an elastic semi-infinite substrate. The elastic layer is smoothly indented with a flat-ended cylindrical indenter. The analytical and exact solutions were obtained by solving an infinite system of simultaneous equations using the method to express a normal contact stress at the upper surface of the elastic layer as an appropriate series. This paper presented the numerical results of internal stress and displacement distributions for hard-coating system with constant values of Poisson’s ratio and the thickness of elastic layer.

Study on the Use of Manganese-Containing Materials as a Micro Fertilizer Based on the Local Mineral Resources and Industrial Wastes in Hydroponic Systems

Hydroponic greenhouses systems (production of the artificial substrate without soil) are becoming popular in the world. Mostly the system is used to grow vegetables and berries. Different countries are taking action to participate in the development of hydroponic technology and solutions such as EU members, Turkey, Australia, New Zealand, Israel, Scandinavian countries, etc. Many vegetables and berries are grown by hydroponics in Europe. As a result of our research, we have obtained material containing manganese and nitrogen. It became possible to produce this fertilizer by means of one-stage thermal processing, using industrial waste containing manganese (ores and sludges) and mineral substance (ammonium nitrate) that exist in Georgia. The received material is usable as a micro-fertilizer with economic efficiency. It became possible to turn practically water-insoluble manganese dioxide substance into the soluble condition from industrial waste in an indirect way. The ability to use the material as a fertilizer is predetermined by its chemical and phase composition, as the amount of the active component of the material in relation to manganese is 30%. At the same time, the active component elements presented non-ballast sustained action compounds. The studies implemented in Poland and in Georgia by us have shown that the manganese-containing micro-fertilizer- Mn(NO3)2 can provide the plant with nitrate nitrogen, which is a form that can be used for plants, providing the economy and simplicity of the application of fertilizers. Given the fact that the application of the manganese-containing micro-fertilizers significantly increases the productivity and improves the quality of the big number of agricultural products, it is necessary to mention that it is recommended to introduce the manganese containing fertilizers into the following cultures: sugar beet, corn, potato, vegetables, vine grape, fruit, berries, and other cultures. Also, as a result of the study, it was established that the material obtained is the predominant fertilizer for vegetable cultures in the soil. Based on the positive results of the research, we consider it expedient to conduct research in hydroponic systems, which will enable us to provide plants the required amount of manganese; we also introduce nitrogen in solution and regulate the solution of pH, which is one of the main problems in hydroponic production. The findings of our research will be used in hydroponic greenhouse farms to increase the fertility of vegetable crops and, consequently, to get bountiful and high-quality harvests, which will promote the development of hydroponic greenhouses in Georgia as well as abroad.

Morphology of Indian Female Athletes of Different Track and Field Events

Participation in games and sports in the contemporary times has become more competing with the developed scientific knowledge, skills and methods, along with the equipment and applied research in the field. In spite of India being a large country having vast resources and potential, its performance in the world of sports on the whole needs sincere attention for better achievements. Beside numerous factors responsible for the dismal performance of a sportsperson, the physique and body composition, including the size, shape and form are known to play a significant role. The present investigation was undertaken to study the specific morphological characteristics of Indian female Track and Field athletes. A total of 300 athletes were randomly selected as sample for the purpose of the study from the six events having 50 athletes in each event including 100m., 400m., Shot Put, Discus Throw, Long Jump and High Jump. The study included body weight, body fat percentage, lean body weight, endomorphy, mesomorphy and ectomorphy as variables. The data were computed statistically by using Mean, Standard Deviation and Analysis of Variance. The post-hoc analysis was conducted where the F-ratio was found to be significant at .05 level. The study concluded that there is a significant difference with regard to the selected variables among the Indian female athletes of different track and field events.

Cultural Effects on the Performance of Non- Profit and For-Profit Microfinance Institutions

Using a large dataset of more than 2,400 individual microfinance institutions (MFIs) from 120 countries from 1999 to 2016, this study finds that nearly half of the international MFIs operate as for-profit institutions. Formal institutions (business regulatory environment, property rights, social protection, and a developed financial sector) impact the likelihood of MFIs being for-profit across countries. Cultural differences across countries (power distance, individualism, masculinity, and indulgence) seem to be a factor in the legal status of the MFI (non-profit or for-profit). MFIs in countries with stronger formal institutions, a greater degree of power distance, and a higher degree of collectivism experience better financial and social performance.

The Design of a Die for the Processing of Aluminum through Equal Channel Angular Pressing

The processing of metals through Equal Channel Angular Pressing (ECAP) leads to their remarkable strengthening. The ECAP dies control the amount of strain imposed on the material through its geometry, especially through the angle between the die channels, and thus the microstructural and mechanical properties evolution of the material. The present study describes the design of an ECAP die whose utilization and maintenance are facilitated, and that also controls the eventual undesired flow of the material during processing. The proposed design was validated through numerical simulations procedures using commercial software. The die was manufactured according to the present design and tested. Tests using aluminum alloys also indicated to be suitable for the processing of higher strength alloys.

Natural Frequency Analysis of a Porous Functionally Graded Shaft System

The vibration characteristics of a functionally graded (FG) rotor model having porosities and micro-voids is investigated using three-dimensional finite element analysis. The FG shaft is mounted with a steel disc located at the midspan. The shaft ends are supported on isotropic bearings. The FG material is composed of a metallic (stainless-steel) and ceramic phase (zirconium oxide) as its constituent phases. The layer wise material property variation is governed by power law. Material property equations are developed for the porosity modelling. Python code is developed to assign the material properties to each layer including the effect of porosities. ANSYS commercial software is used to extract the natural frequencies and whirl frequencies for the FG shaft system. The obtained results show the influence of porosity volume fraction and power-law index, on the vibration characteristics of the ceramic-based FG shaft system.

Geophysical Investigation of Abnormal Seepages in Goronyo Dam Sokoto, North Western Nigeria Using Self-Potential Method

In this research, Self-Potential (SP) method was employed to locate anomalous electrical conductivity located in Goronyo area and also to determine the condition of the embankment of the dam. SP data were plotted against distance along with the profile and spacing of electrode using surfer software (version 12). High and low zones of SP values were identified along the right and left abutments of the dam reservoir. The regions with high SP values were described to be high tendency of fluid flow associate with wet sandy soil. These zones have the SP values ranging from 200 mV and above. High SP values were due to the high moisture content that may lead to the seepage of water leaking through this zone. The zones with high SP values occupied Profiles S1, S2, S3, S4 and S5 indicating the presence of potential seepage paths within the subsurface of the embankment. These regions of seepage were identified as weak zones and potential pathways through which water could be lost from the dam reservoir. The SP values for the regions range from 250 m to 400 m (S1), 306 m to 400 m (S2), 192 m to 400 m (S3), 48 m to 200 m (S4) and 7 m to 170 m (S5) with their corresponding maximum depths of 30 m, 28 m, 28 m, 30 m and 26 m respectively. However, zones of low SP values in the overburden were observed which shows the presence of intact regions, which may be due to the compactness and dryness around the dam. The weak zones were considered as geological features (such as fractures, joints, and faults) that have undermined the integrity of the dam structure, which has led to the abnormal seepage.

Model Reference Adaptive Approach for Power System Stabilizer for Damping of Power Oscillations

In recent years, electricity trade between neighboring countries has become increasingly intense. Increasing power transmission over long distances has resulted in an increase in the oscillations of the transmitted power. The damping of the oscillations can be carried out with the reconfiguration of the network or the replacement of generators, but such solution is not economically reasonable. The only cost-effective solution to improve the damping of power oscillations is to use power system stabilizers. Power system stabilizer represents a part of synchronous generator control system. It utilizes semiconductor’s excitation system connected to the rotor field excitation winding to increase the damping of the power system. The majority of the synchronous generators are equipped with the conventional power system stabilizers with fixed parameters. The control structure of the conventional power system stabilizers and the tuning procedure are based on the linear control theory. Conventional power system stabilizers are simple to realize, but they show non-sufficient damping improvement in the entire operating conditions. This is the reason that advanced control theories are used for development of better power system stabilizers. In this paper, the adaptive control theory for power system stabilizers design and synthesis is studied. The presented work is focused on the use of model reference adaptive control approach. Control signal, which assures that the controlled plant output will follow the reference model output, is generated by the adaptive algorithm. Adaptive gains are obtained as a combination of the "proportional" term and with the σ-term extended "integral" term. The σ-term is introduced to avoid divergence of the integral gains. The necessary condition for asymptotic tracking is derived by means of hyperstability theory. The benefits of the proposed model reference adaptive power system stabilizer were evaluated as objectively as possible by means of a theoretical analysis, numerical simulations and laboratory realizations. Damping of the synchronous generator oscillations in the entire operating range was investigated. Obtained results show the improved damping in the entire operating area and the increase of the power system stability. The results of the presented work will help by the development of the model reference power system stabilizer which should be able to replace the conventional stabilizers in power systems.