A Software Tool Design for Cerebral Infarction of MR Images

The brain MR imaging-based clinical research and analysis system were specifically built and the development for a large-scale data was targeted. We used the general clinical data available for building large-scale data. Registration period for the selection of the lesion ROI and the region growing algorithm was used and the Mesh-warp algorithm for matching was implemented. The accuracy of the matching errors was modified individually. Also, the large ROI research data can accumulate by our developed compression method. In this way, the correctly decision criteria to the research result was suggested. The experimental groups were age, sex, MR type, patient ID and smoking which can easily be queries. The result data was visualized of the overlapped images by a color table. Its data was calculated by the statistical package. The evaluation for the utilization of this system in the chronic ischemic damage in the area has done from patients with the acute cerebral infarction. This is the cause of neurologic disability index location in the center portion of the lateral ventricle facing. The corona radiate was found in the position. Finally, the system reliability was measured both inter-user and intra-user registering correlation.

Feasibility of the Evolutionary Algorithm using Different Behaviours of the Mutation Rate to Design Simple Digital Logic Circuits

The evolutionary design of electronic circuits, or evolvable hardware, is a discipline that allows the user to automatically obtain the desired circuit design. The circuit configuration is under the control of evolutionary algorithms. Several researchers have used evolvable hardware to design electrical circuits. Every time that one particular algorithm is selected to carry out the evolution, it is necessary that all its parameters, such as mutation rate, population size, selection mechanisms etc. are tuned in order to achieve the best results during the evolution process. This paper investigates the abilities of evolution strategy to evolve digital logic circuits based on programmable logic array structures when different mutation rates are used. Several mutation rates (fixed and variable) are analyzed and compared with each other to outline the most appropriate choice to be used during the evolution of combinational logic circuits. The experimental results outlined in this paper are important as they could be used by every researcher who might need to use the evolutionary algorithm to design digital logic circuits.

Studying the Environmental Effects of using Biogas Energy in Iran

Presently and in line with the United Nations (EPA), human thinking system has shifted towards clean fuels so as to maintain a cleaner environment and to save our planet earth. One of the most successful studies in order to achieve new energies includes the use of animal wastes and their organic residues, and the result of these researches has been represented in the form of very simple and cheap methods called biogas technology. Biogas technology has developed a lot in the recent decades; its reason is the high cost of fossil fuels and the greater attention of countries to the environmental pollutions due to the consumption of this kind of fuels. IRAN is ready for the optimized application of renewable energies, having much enriched resources of this kind of energies; so a special place could be considered for it when making programs. The purpose of biogas technology is the recovery of energy and finally the protection of the environment, which is much appropriate for the third world farmers with respect to their technical abilities and economic potentials. Studies show that the production and consumption of biogas is appropriate and economic in IRAN, because of the high amount of waste in the agriculture sector, the significant amount of animal and human excrement production, the great volume of garbage produced and the most important the specific social, climatic and agricultural conditions in IRAN, in order to proceed towards the reduction of pollution due to the use of fossil fuels.

A High-Speed Multiplication Algorithm Using Modified Partial Product Reduction Tree

Multiplication algorithms have considerable effect on processors performance. A new high-speed, low-power multiplication algorithm has been presented using modified Dadda tree structure. Three important modifications have been implemented in inner product generation step, inner product reduction step and final addition step. Optimized algorithms have to be used into basic computation components, such as multiplication algorithms. In this paper, we proposed a new algorithm to reduce power, delay, and transistor count of a multiplication algorithm implemented using low power modified counter. This work presents a novel design for Dadda multiplication algorithms. The proposed multiplication algorithm includes structured parts, which have important effect on inner product reduction tree. In this paper, a 1.3V, 64-bit carry hybrid adder is presented for fast, low voltage applications. The new 64-bit adder uses a new circuit to implement the proposed carry hybrid adder. The new adder using 80 nm CMOS technology has been implemented on 700 MHz clock frequency. The proposed multiplication algorithm has achieved 14 percent improvement in transistor count, 13 percent reduction in delay and 12 percent modification in power consumption in compared with conventional designs.

Flowability and Strength Development Characteristics of Bottom Ash Based Geopolymer

Despite of the preponderant role played by cement among the construction materials, it is today considered as a material destructing the environment due to the large quantities of carbon dioxide exhausted during its manufacture. Besides, global warming is now recognized worldwide as the new threat to the humankind against which advanced countries are investigating measures to reduce the current amount of exhausted gases to the half by 2050. Accordingly, efforts to reduce green gases are exerted in all industrial fields. Especially, the cement industry strives to reduce the consumption of cement through the development of alkali-activated geopolymer mortars using industrial byproducts like bottom ash. This study intends to gather basic data on the flowability and strength development characteristics of alkali-activated geopolymer mortar by examining its FT-IT features with respect to the effects and strength of the alkali-activator in order to develop bottom ash-based alkali-activated geopolymer mortar. The results show that the 35:65 mass ratio of sodium hydroxide to sodium silicate is appropriate and that a molarity of 9M for sodium hydroxide is advantageous. The ratio of the alkali-activators to bottom ash is seen to have poor effect on the strength. Moreover, the FT-IR analysis reveals that larger improvement of the strength shifts the peak from 1060 cm–1 (T-O, T=Si or Al) toward shorter wavenumber.

Impact of Height of Silicon Pillar on Vertical DG-MOSFET Device

Vertical Double Gate (DG) Metal Oxide Semiconductor Field Effect Transistor (MOSFET) is believed to suppress various short channel effect problems. The gate to channel coupling in vertical DG-MOSFET are doubled, thus resulting in higher current density. By having two gates, both gates are able to control the channel from both sides and possess better electrostatic control over the channel. In order to ensure that the transistor possess a superb turn-off characteristic, the subs-threshold swing (SS) must be kept at minimum value (60-90mV/dec). By utilizing SILVACO TCAD software, an n-channel vertical DG-MOSFET was successfully designed while keeping the sub-threshold swing (SS) value as minimum as possible. From the observation made, the value of sub-threshold swing (SS) was able to be varied by adjusting the height of the silicon pillar. The minimum value of sub-threshold swing (SS) was found to be 64.7mV/dec with threshold voltage (VTH) of 0.895V. The ideal height of the vertical DG-MOSFET pillar was found to be at 0.265 µm.

Business Process Orientation: Case of Croatia

Because of the increasing business pressures, companies must be adaptable and flexible in order to withstand them. Inadequate business processes and low level of business process orientation, that in its core accentuates business processes as opposed to business functions and focuses on process performance and customer satisfaction, hider the ability to adapt to changing environment. It has been shown in previous studies that the companies which have reached higher business process maturity level consistently outperform those that have not reached them. The aim of this paper is to provide a basic understanding of business process orientation concept and business process maturity model. Besides that the paper presents the state of business process orientation in Croatia that has been captured with a study conducted in 2013. Based on the results some practical implications and guidelines for managers are given.

Virtual Mechanical Engineering Education – A Case Study

Virtual engineering technology has undergone rapid progress in recent years and is being adopted increasingly by manufacturing companies of many engineering disciplines. There is an increasing demand from industry for qualified virtual engineers. The qualified virtual engineers should have the ability of applying engineering principles and mechanical design methods within the commercial software package environment. It is a challenge to the engineering education in universities which traditionally tends to lack the integration of knowledge and skills required for solving real world problems. In this paper, a case study shows some recent development of a MSc Mechanical Engineering course at Department of Engineering and Technology in MMU, and in particular, two units Simulation of Mechanical Systems(SMS) and Computer Aided Fatigue Analysis(CAFA) that emphasize virtual engineering education and promote integration of knowledge acquisition, skill training and industrial application.

Pregnancy Myths and Early Chilcare: Research Reflections from the Rural Punjab, Pakistan

Pregnancy is considered a special period in a woman’s life. There are myths about pregnancy that describe gender predictions, dietary beliefs, pregnancy signs, and risk of magic or witchcraft. Majority of these myths is in connection with the early childcare. In traditional societies midwives and experienced women practice and teach these myths to young mothers. Mother who feel special and vulnerable, at the same time feel secure in following these socially transmitted myths. Rural Punjab, a province of Pakistan has a culture rich with beliefs and myths. Myths about pregnancy are significant in rural culture and pregnancy care is seen as mother and childcare. This paper presents my research reflections that I did as a part of my Ph.D studies about early childcare beliefs and rituals practiced in rural Punjab, Pakistan.

Reliability Evaluation using Triangular Intuitionistic Fuzzy Numbers Arithmetic Operations

In general fuzzy sets are used to analyze the fuzzy system reliability. Here intuitionistic fuzzy set theory for analyzing the fuzzy system reliability has been used. To analyze the fuzzy system reliability, the reliability of each component of the system as a triangular intuitionistic fuzzy number is considered. Triangular intuitionistic fuzzy number and their arithmetic operations are introduced. Expressions for computing the fuzzy reliability of a series system and a parallel system following triangular intuitionistic fuzzy numbers have been described. Here an imprecise reliability model of an electric network model of dark room is taken. To compute the imprecise reliability of the above said system, reliability of each component of the systems is represented by triangular intuitionistic fuzzy numbers. Respective numerical example is presented.

Building an Inferential Model between Caregivers and Patients by using RFID

Nosocomial (i.e., hospital-acquired) infections (NI) is a major cause of morbidity and mortality in hospitals. NI rate is higher in intensive care units (ICU) than in the general ward due to patients with severe symptoms, poor immunity, and accepted many invasive therapies. Contact behaviors between health caregivers and patients is one of the infect factors. It is difficult to obtain complete contact records by traditional method of retrospective analysis of medical records. This paper establishes a contact history inferential model (CHIM) intended to extend the use of Proximity Sensing of rapid frequency identification (RFID) technology to transferring all proximity events between health caregivers and patients into clinical events (close-in events, contact events and invasive events).The results of the study indicated that the CHIM can infer proximity care activities into close-in events and contact events. The infection control team could redesign and build optimal workflow in the ICU according to the patient-specific contact history which provided by our automatic tracing system.

A Co-writing Development Approachto Wikis: PedagogicalIssues and Implications

Wikis are promoted as collaborative writing tools that allow students to transform a text into a collective document by information sharing and group reflection. However, despite the promising collaborative capabilities of wikis, their pedagogical value regarding collaborative writing is still questionable. Wiki alone cannot make collaborative writing happen, and students do not automatically become more active, participate, and collaborate with others when they use wikis. To foster collaborative writing and active involvement in wiki development there is a need for a systematic approach to wikis. Themain goal of this paper is to propose and evaluate a co-writing approach to the development of wikis, along with the study of three wiki applications to report on pedagogical implications of collaborative writing in higher education.

Factors Influencing Rote Learner's Intention to Use WBL: Developing Country Study

Previous researches found that conventional WBL is effective for meaningful learner, because rote learner learn by repeating without thinking or trying to understand. It is impossible to have full benefit from conventional WBL. Understanding of rote learner-s intention and what influences it becomes important. Poorly designed user interface will discourage rote learner-s cultivation and intention to use WBL. Thus, user interface design is an important factor especially when WBL is used as comprehensive replacement of conventional teaching. This research proposes the influencing factors that can enhance learner-s intention to use the system. The enhanced TAM is used for evaluating the proposed factors. The research result points out that factors influencing rote learner-s intention are Perceived Usefulness of Homepage Content Structure, Perceived User Friendly Interface, Perceived Hedonic Component, and Perceived (homepage) Visual Attractiveness.

Carbon-Based Composites Enable Monitoring of Internal States in Concrete Structures

Regarding previous research studies it was concluded that thin-walled fiber-cement composites are able to conduct electric current under specific conditions. This property is ensured by using of various kinds of carbon materials. Though carbon fibers are less conductive than metal fibers, composites with carbon fibers were evaluated as better current conductors than the composites with metal fibers. The level of electric conductivity is monitored by the means of impedance measurement of designed samples. These composites could be used for a range of applications such as heating of trafficable surfaces or shielding of electro-magnetic fields. The aim of the present research was to design an element with the ability to monitor internal processes in building structures and prevent them from collapsing. As a typical element for laboratory testing there was chosen a concrete column, which was repeatedly subjected to load by simple pressure with continual monitoring of changes in electrical properties.

A General Model for Acquiring Knowledge

In this paper, based on the work in [1], we further give a general model for acquiring knowledge, which first focuses on the research of how and when things involved in problems are made then describes the goals, the energy and the time to give an optimum model to decide how many related things are supposed to be involved in. Finally, we acquire knowledge from this model in which there are the attributes, actions and connections of the things involved at the time when they are born and the time in their life. This model not only improves AI theories, but also surely brings the effectiveness and accuracy for AI system because systems are given more knowledge when reasoning or computing is used to bring about results.

A Stereo Image Processing System for Visually Impaired

This paper presents a review on vision aided systems and proposes an approach for visual rehabilitation using stereo vision technology. The proposed system utilizes stereo vision, image processing methodology and a sonification procedure to support blind navigation. The developed system includes a wearable computer, stereo cameras as vision sensor and stereo earphones, all moulded in a helmet. The image of the scene infront of visually handicapped is captured by the vision sensors. The captured images are processed to enhance the important features in the scene in front, for navigation assistance. The image processing is designed as model of human vision by identifying the obstacles and their depth information. The processed image is mapped on to musical stereo sound for the blind-s understanding of the scene infront. The developed method has been tested in the indoor and outdoor environments and the proposed image processing methodology is found to be effective for object identification.

A Semantic Web Based Ontology in the Financial Domain

The paper describes design of an ontology in the financial domain for mutual funds. The design of this ontology consists of four steps, namely, specification, knowledge acquisition, implementation and semantic query. Specification includes a description of the taxonomy and different types mutual funds and their scope. Knowledge acquisition involves the information extraction from heterogeneous resources. Implementation describes the conceptualization and encoding of this data. Finally, semantic query permits complex queries to integrated data, mapping of these database entities to ontological concepts.

The New Effective Biostimulator for Agroecological Engineering

New biostimulator from wheat seeds which by its chemical composition relates to fusicoccin is presented in this article. New biostimulator could be used as powerful hormonal substance that has ability to increase productivity and salt tolerance of agricultural plants. Also on the basis of biostimulator we have developed vegetative method for fast reproduction of perennial plants as desert plant - Tamarix gracilis.

Humor Roles of Females in a Product Color Matrix

Healthcare providers sometimes use the power of humor as a treatment and therapy for buffering mental health or easing mental disorders because humor can provide relief from distress and conflict. Humor is also very suitable for advertising because of similar benefits. This study carefully examines humor's widespread use in advertising and identifies relationships among humor mechanisms, female depictions, and product types. The purpose is to conceptualize how humor theories can be used not only to successfully define a product as fitting within one of four color categories of the product color matrix, but also to identify compelling contemporary female depictions through humor in ads. The results can offer an idealization for marketing managers and consumers to help them understand how female role depictions can be effectively used with humor in ads. The four propositions developed herein are derived from related literature, through the identification of marketing strategy formulations that achieve product memory enhancement by adopting humor mechanisms properly matched with female role depictions.

Fault Detection of Pipeline in Water Distribution Network System

Water pipe network is installed underground and once equipped, it is difficult to recognize the state of pipes when the leak or burst happens. Accordingly, post management is often delayed after the fault occurs. Therefore, the systematic fault management system of water pipe network is required to prevent the accident and minimize the loss. In this work, we develop online fault detection system of water pipe network using data of pipes such as flow rate or pressure. The transient model describing water flow in pipelines is presented and simulated using MATLAB. The fault situations such as the leak or burst can be also simulated and flow rate or pressure data when the fault happens are collected. Faults are detected using statistical methods of fast Fourier transform and discrete wavelet transform, and they are compared to find which method shows the better fault detection performance.