Performance of Dual MRC Receiver for M-ary Modulations over Correlated Nakagami-m Fading Channels with Non-identical and Arbitrary Fading Parameter

Performance of a dual maximal ratio combining receiver has been analyzed for M-ary coherent and non-coherent modulations over correlated Nakagami-m fading channels with nonidentical and arbitrary fading parameter. The classical probability density function (PDF) based approach is used for analysis. Expressions for outage probability and average symbol error performance for M-ary coherent and non-coherent modulations have been obtained. The obtained results are verified against the special case published results and found to be matching. The effect of the unequal fading parameters, branch correlation and unequal input average SNR on the receiver performance has been studied.

Multiple Object Tracking using Particle Swarm Optimization

This paper presents a particle swarm optimization (PSO) based approach for multiple object tracking based on histogram matching. To start with, gray-level histograms are calculated to establish a feature model for each of the target object. The difference between the gray-level histogram corresponding to each particle in the search space and the target object is used as the fitness value. Multiple swarms are created depending on the number of the target objects under tracking. Because of the efficiency and simplicity of the PSO algorithm for global optimization, target objects can be tracked as iterations continue. Experimental results confirm that the proposed PSO algorithm can rapidly converge, allowing real-time tracking of each target object. When the objects being tracked move outside the tracking range, global search capability of the PSO resumes to re-trace the target objects.

Generalized Predictive Control of Batch Polymerization Reactor

This paper describes the application of a model predictive controller to the problem of batch reactor temperature control. Although a great deal of work has been done to improve reactor throughput using batch sequence control, the control of the actual reactor temperature remains a difficult problem for many operators of these processes. Temperature control is important as many chemical reactions are sensitive to temperature for formation of desired products. This controller consist of two part (1) a nonlinear control method GLC (Global Linearizing Control) to create a linear model of system and (2) a Model predictive controller used to obtain optimal input control sequence. The temperature of reactor is tuned to track a predetermined temperature trajectory that applied to the batch reactor. To do so two input signals, electrical powers and the flow of coolant in the coil are used. Simulation results show that the proposed controller has a remarkable performance for tracking reference trajectory while at the same time it is robust against noise imposed to system output.

The Best Efficiency Point of the Performance of Solar Cell Panel System for Pumping Water at Various Lifting Heads Using 100 W Motor- Pump Unit

This study was carried out experimentally and analytically about the performance of solar cell panel system for operating the pump coupled by dc-motor. The solar cell panel with total area 1.9848 m2 consists of three modules of 80 Wp each. The small centrifugal pump powered by dc-motor is operated to lift water from 1m to 7m heads in sequence and gives the amount of water pumped over the whole day from 08.00 to 16.00 h are 11988, 10851, 8874, 7695, 5760, 3600, 2340 L/d respectively. The hourly global solar radiation during the day is an average of 506 W/m2. This study also presents the I-V characteristics of the panel at global radiations 200, 400, 600, 800 and 1000 W/m2 matched with the operation of the pump at the above lifting heads. It proves that the only solar radiations 800 and 1000 W/m2 could provide lifting head from 1m to 7m. The analysis shows the best efficiency point of the performance of solar cell panel system occurs at the pumping head 2.89 m.

Affine Radial Basis Function Neural Networks for the Robust Control of Hyperbolic Distributed Parameter Systems

In this work, a radial basis function (RBF) neural network is developed for the identification of hyperbolic distributed parameter systems (DPSs). This empirical model is based only on process input-output data and used for the estimation of the controlled variables at specific locations, without the need of online solution of partial differential equations (PDEs). The nonlinear model that is obtained is suitably transformed to a nonlinear state space formulation that also takes into account the model mismatch. A stable robust control law is implemented for the attenuation of external disturbances. The proposed identification and control methodology is applied on a long duct, a common component of thermal systems, for a flow based control of temperature distribution. The closed loop performance is significantly improved in comparison to existing control methodologies.

Effective Scheduling of Semiconductor Manufacturing using Simulation

The process of wafer fabrication is arguably the most technologically complex and capital intensive stage in semiconductor manufacturing. This large-scale discrete-event process is highly reentrant, and involves hundreds of machines, restrictions, and processing steps. Therefore, production control of wafer fabrication facilities (fab), specifically scheduling, is one of the most challenging problems that this industry faces. Dispatching rules have been extensively applied to the scheduling problems in semiconductor manufacturing. Moreover, lot release policies are commonly used in this manufacturing setting to further improve the performance of such systems and reduce its inherent variability. In this work, simulation is used in the scheduling of re-entrant flow shop manufacturing systems with an application in semiconductor wafer fabrication; where, a simulation model has been developed for the Intel Five-Machine Six Step Mini-Fab using the ExtendTM simulation environment. The Mini-Fab has been selected as it captures the challenges involved in scheduling the highly re-entrant semiconductor manufacturing lines. A number of scenarios have been developed and have been used to evaluate the effect of different dispatching rules and lot release policies on the selected performance measures. Results of simulation showed that the performance of the Mini-Fab can be drastically improved using a combination of dispatching rules and lot release policy.

Automatic Feature Recognition for GPR Image Processing

This paper presents an automatic feature recognition method based on center-surround difference detecting and fuzzy logic that can be applied in ground-penetrating radar (GPR) image processing. Adopted center-surround difference method, the salient local image regions are extracted from the GPR images as features of detected objects. And fuzzy logic strategy is used to match the detected features and features in template database. This way, the problem of objects detecting, which is the key problem in GPR image processing, can be converted into two steps, feature extracting and matching. The contributions of these skills make the system have the ability to deal with changes in scale, antenna and noises. The results of experiments also prove that the system has higher ratio of features sensing in using GPR to image the subsurface structures.

Use of Agricultural Waste for the Removal of Nickel Ions from Aqueous Solutions: Equilibrium and Kinetics Studies

The potential of economically cheaper cellulose containing natural materials like rice husk was assessed for nickel adsorption from aqueous solutions. The effects of pH, contact time, sorbent dose, initial metal ion concentration and temperature on the uptake of nickel were studied in batch process. The removal of nickel was dependent on the physico-chemical characteristics of the adsorbent, adsorbate concentration and other studied process parameters. The sorption data has been correlated with Langmuir, Freundlich and Dubinin-Radush kevich (D-R) adsorption models. It was found that Freundlich and Langmuir isotherms fitted well to the data. Maximum nickel removal was observed at pH 6.0. The efficiency of rice husk for nickel removal was 51.8% for dilute solutions at 20 g L-1 adsorbent dose. FTIR, SEM and EDAX were recorded before and after adsorption to explore the number and position of the functional groups available for nickel binding on to the studied adsorbent and changes in surface morphology and elemental constitution of the adsorbent. Pseudo-second order model explains the nickel kinetics more effectively. Reusability of the adsorbent was examined by desorption in which HCl eluted 78.93% nickel. The results revealed that nickel is considerably adsorbed on rice husk and it could be and economic method for the removal of nickel from aqueous solutions.

Adaptive Fuzzy Control for Air-Fuel Ratio of Automobile Spark Ignition Engine

In order to meet the limits imposed on automotive emissions, engine control systems are required to constrain air/fuel ratio (AFR) in a narrow band around the stoichiometric value, due to the strong decay of catalyst efficiency in case of rich or lean mixture. This paper presents a model of a sample spark ignition engine and demonstrates Simulink-s capabilities to model an internal combustion engine from the throttle to the crankshaft output. We used welldefined physical principles supplemented, where appropriate, with empirical relationships that describe the system-s dynamic behavior without introducing unnecessary complexity. We also presents a PID tuning method that uses an adaptive fuzzy system to model the relationship between the controller gains and the target output response, with the response specification set by desired percent overshoot and settling time. The adaptive fuzzy based input-output model is then used to tune on-line the PID gains for different response specifications. Experimental results demonstrate that better performance can be achieved with adaptive fuzzy tuning relative to similar alternative control strategies. The actual response specifications with adaptive fuzzy matched the desired response specifications.

A Novel Fuzzy Logic Based Controller to Adjust the Brightness of the Television Screen with Respect to Surrounding Light

One of the major cause of eye strain and other problems caused while watching television is the relative illumination between the screen and its surrounding. This can be overcome by adjusting the brightness of the screen with respect to the surrounding light. A controller based on fuzzy logic is proposed in this paper. The fuzzy controller takes in the intensity of light surrounding the screen and the present brightness of the screen as input. The output of the fuzzy controller is the grid voltage corresponding to the required brightness. This voltage is given to CRT and brightness is controller dynamically. For the given test system data, different de-fuzzifier methods have been implemented and the results are compared. In order to validate the effectiveness of the proposed approach, a fuzzy controller has been designed by obtaining a test data from a real time system. The simulations are performed in MATLAB and are verified with standard system data. The proposed approach can be implemented for real time applications.

Some Peculiarities of Growth and Functional Activity of Escherichia coli Strain from Probiotic Formula “ASAP“

It has been shown that pH 7,3 and 37 0C are the optimal condition for the growth of E. coli “ASAP". The cells grow well on Glucose, Lactose, D-Mannitol, D-Sorbitol, (+)-Xylose, L- (+)-Arabinose and Dulcitol. No growth has been observed on Sucrose, Inositol, Phenylalanine, and Tryptophan. The strain is sensitive to a range of antibiotics. The present study has demonstrated that E. coli “ASAP" inhibit the growth of S. enterica ATCC #700931 in vitro. The studies on conjugating activity has revealed no conjugant of E. coli “ASAP" with plasmid strains E. coli G35#59 and S. enterica ATCC #700931. On the other hand, the conjugants with low frequencies were obtained from E. coli “ASAP" with E. coli G35#61, and E. coli “ASAP" with randomly chosen isolate from healthy human gut microflora: E. coli E6. The results of present study have demonstrated improvements in gut microflora condition of patients with different diseases after the administration of “ASAP"

A Software Tool Design for Cerebral Infarction of MR Images

The brain MR imaging-based clinical research and analysis system were specifically built and the development for a large-scale data was targeted. We used the general clinical data available for building large-scale data. Registration period for the selection of the lesion ROI and the region growing algorithm was used and the Mesh-warp algorithm for matching was implemented. The accuracy of the matching errors was modified individually. Also, the large ROI research data can accumulate by our developed compression method. In this way, the correctly decision criteria to the research result was suggested. The experimental groups were age, sex, MR type, patient ID and smoking which can easily be queries. The result data was visualized of the overlapped images by a color table. Its data was calculated by the statistical package. The evaluation for the utilization of this system in the chronic ischemic damage in the area has done from patients with the acute cerebral infarction. This is the cause of neurologic disability index location in the center portion of the lateral ventricle facing. The corona radiate was found in the position. Finally, the system reliability was measured both inter-user and intra-user registering correlation.

Bee Parameter Determination via Weighted Centriod Modified Simplex and Constrained Response Surface Optimisation Methods

Various intelligences and inspirations have been adopted into the iterative searching process called as meta-heuristics. They intelligently perform the exploration and exploitation in the solution domain space aiming to efficiently seek near optimal solutions. In this work, the bee algorithm, inspired by the natural foraging behaviour of honey bees, was adapted to find the near optimal solutions of the transportation management system, dynamic multi-zone dispatching. This problem prepares for an uncertainty and changing customers- demand. In striving to remain competitive, transportation system should therefore be flexible in order to cope with the changes of customers- demand in terms of in-bound and outbound goods and technological innovations. To remain higher service level but lower cost management via the minimal imbalance scenario, the rearrangement penalty of the area, in each zone, including time periods are also included. However, the performance of the algorithm depends on the appropriate parameters- setting and need to be determined and analysed before its implementation. BEE parameters are determined through the linear constrained response surface optimisation or LCRSOM and weighted centroid modified simplex methods or WCMSM. Experimental results were analysed in terms of best solutions found so far, mean and standard deviation on the imbalance values including the convergence of the solutions obtained. It was found that the results obtained from the LCRSOM were better than those using the WCMSM. However, the average execution time of experimental run using the LCRSOM was longer than those using the WCMSM. Finally a recommendation of proper level settings of BEE parameters for some selected problem sizes is given as a guideline for future applications.

Combining Similarity and Dissimilarity Measurements for the Development of QSAR Models Applied to the Prediction of Antiobesity Activity of Drugs

In this paper we study different similarity based approaches for the development of QSAR model devoted to the prediction of activity of antiobesity drugs. Classical similarity approaches are compared regarding to dissimilarity models based on the consideration of the calculation of Euclidean distances between the nonisomorphic fragments extracted in the matching process. Combining the classical similarity and dissimilarity approaches into a new similarity measure, the Approximate Similarity was also studied, and better results were obtained. The application of the proposed method to the development of quantitative structure-activity relationships (QSAR) has provided reliable tools for predicting of inhibitory activity of drugs. Acceptable results were obtained for the models presented here.

Factors Influencing Rote Learner's Intention to Use WBL: Developing Country Study

Previous researches found that conventional WBL is effective for meaningful learner, because rote learner learn by repeating without thinking or trying to understand. It is impossible to have full benefit from conventional WBL. Understanding of rote learner-s intention and what influences it becomes important. Poorly designed user interface will discourage rote learner-s cultivation and intention to use WBL. Thus, user interface design is an important factor especially when WBL is used as comprehensive replacement of conventional teaching. This research proposes the influencing factors that can enhance learner-s intention to use the system. The enhanced TAM is used for evaluating the proposed factors. The research result points out that factors influencing rote learner-s intention are Perceived Usefulness of Homepage Content Structure, Perceived User Friendly Interface, Perceived Hedonic Component, and Perceived (homepage) Visual Attractiveness.

Humor Roles of Females in a Product Color Matrix

Healthcare providers sometimes use the power of humor as a treatment and therapy for buffering mental health or easing mental disorders because humor can provide relief from distress and conflict. Humor is also very suitable for advertising because of similar benefits. This study carefully examines humor's widespread use in advertising and identifies relationships among humor mechanisms, female depictions, and product types. The purpose is to conceptualize how humor theories can be used not only to successfully define a product as fitting within one of four color categories of the product color matrix, but also to identify compelling contemporary female depictions through humor in ads. The results can offer an idealization for marketing managers and consumers to help them understand how female role depictions can be effectively used with humor in ads. The four propositions developed herein are derived from related literature, through the identification of marketing strategy formulations that achieve product memory enhancement by adopting humor mechanisms properly matched with female role depictions.

Solving the Economic Dispatch Problem by Using Differential Evolution

This paper proposes an application of the differential evolution (DE) algorithm for solving the economic dispatch problem (ED). Furthermore, the regenerating population procedure added to the conventional DE in order to improve escaping the local minimum solution. To test performance of DE algorithm, three thermal generating units with valve-point loading effects is used for testing. Moreover, investigating the DE parameters is presented. The simulation results show that the DE algorithm, which had been adjusted parameters, is better convergent time than other optimization methods.

The Kinetic of Biogas Production Rate from Cattle Manure in Batch Mode

In this study, the kinetic of biogas production was studied by performing a series laboratory experiment using rumen fluid of animal ruminant as inoculums. Cattle manure as substrate was inoculated by rumen fluid to the anaerobic biodigester. Laboratory experiments using 400 ml biodigester were performed in batch operation mode. Given 100 grams of fresh cattle manure was fed to each biodigester and mixed with rumen fluid by manure : rumen weight ratio of 1:1 (MR11). The operating temperatures were varied at room temperature and 38.5 oC. The cumulative volume of biogas produced was used to measure the biodigester performance. The research showed that the rumen fluid inoculated to biodigester gave significant effect to biogas production (P

Neurogenic Potential of Clitoria ternatea Aqueous Root Extract–A Basis for Enhancing Learning and Memory

The neurogenic potential of many herbal extracts used in Indian medicine is hitherto unknown. Extracts derived from Clitoria ternatea Linn have been used in Indian Ayurvedic system of medicine as an ingredient of “Medhya rasayana", consumed for improving memory and longevity in humans and also in treatment of various neurological disorders. Our earlier experimental studies with oral intubation of Clitoria ternatea aqueous root extract (CTR) had shown significant enhancement of learning and memory in postnatal and young adult Wistar rats. The present study was designed to elucidate the in vitro effects of 200ng/ml of CTR on proliferation, differentiation and growth of anterior subventricular zone neural stem cells (aSVZ NSC-s) derived from prenatal and postnatal rat pups. Results show significant increase in proliferation and growth of neurospheres and increase in the yield of differentiated neurons of aSVZ neural precursor cells (aSVZNPC-s) at 7 days in vitro when treated with 200ng/ml of CTR as compared to age matched control. Results indicate that CTR has growth promoting neurogenic effect on aSVZ neural stem cells and their survival similar to neurotrophic factors like Survivin, Neuregulin 1, FGF-2, BDNF possibly the basis for enhanced learning and memory.

Integrating Computational Intelligence Techniques and Assessment Agents in ELearning Environments

In this contribution an innovative platform is being presented that integrates intelligent agents and evolutionary computation techniques in legacy e-learning environments. It introduces the design and development of a scalable and interoperable integration platform supporting: I) various assessment agents for e-learning environments, II) a specific resource retrieval agent for the provision of additional information from Internet sources matching the needs and profile of the specific user and III) a genetic algorithm designed to extract efficient information (classifying rules) based on the students- answering input data. The agents are implemented in order to provide intelligent assessment services based on computational intelligence techniques such as Bayesian Networks and Genetic Algorithms. The proposed Genetic Algorithm (GA) is used in order to extract efficient information (classifying rules) based on the students- answering input data. The idea of using a GA in order to fulfil this difficult task came from the fact that GAs have been widely used in applications including classification of unknown data. The utilization of new and emerging technologies like web services allows integrating the provided services to any web based legacy e-learning environment.