Economic Dispatch Fuzzy Linear Regression and Optimization

This study presents a new approach based on Tanaka's fuzzy linear regression (FLP) algorithm to solve well-known power system economic load dispatch problem (ELD). Tanaka's fuzzy linear regression (FLP) formulation will be employed to compute the optimal solution of optimization problem after linearization. The unknowns are expressed as fuzzy numbers with a triangular membership function that has middle and spread value reflected on the unknowns. The proposed fuzzy model is formulated as a linear optimization problem, where the objective is to minimize the sum of the spread of the unknowns, subject to double inequality constraints. Linear programming technique is employed to obtain the middle and the symmetric spread for every unknown (power generation level). Simulation results of the proposed approach will be compared with those reported in literature.

Wood Species Recognition System

The proposed system identifies the species of the wood using the textural features present in its barks. Each species of a wood has its own unique patterns in its bark, which enabled the proposed system to identify it accurately. Automatic wood recognition system has not yet been well established mainly due to lack of research in this area and the difficulty in obtaining the wood database. In our work, a wood recognition system has been designed based on pre-processing techniques, feature extraction and by correlating the features of those wood species for their classification. Texture classification is a problem that has been studied and tested using different methods due to its valuable usage in various pattern recognition problems, such as wood recognition, rock classification. The most popular technique used for the textural classification is Gray-level Co-occurrence Matrices (GLCM). The features from the enhanced images are thus extracted using the GLCM is correlated, which determines the classification between the various wood species. The result thus obtained shows a high rate of recognition accuracy proving that the techniques used in suitable to be implemented for commercial purposes.

SPH Method used for Flow Predictions at a Turgo Impulse Turbine: Comparison with Fluent

This work is an attempt to use the standard Smoothed Particle Hydrodynamics methodology for the simulation of the complex unsteady, free-surface flow in a rotating Turgo impulse water turbine. A comparison of two different geometries was conducted. The SPH method due to its mesh-less nature is capable of capturing the flow features appearing in the turbine, without diffusion at the water/air interface. Furthermore results are compared with a commercial CFD package (Fluent®) and the SPH algorithm proves to be capable of providing similar results, in much less time than the mesh based CFD program. A parametric study was also performed regarding the turbine inlet angle.

Adaptive Fourier Decomposition Based Signal Instantaneous Frequency Computation Approach

There have been different approaches to compute the analytic instantaneous frequency with a variety of background reasoning and applicability in practice, as well as restrictions. This paper presents an adaptive Fourier decomposition and (α-counting) based instantaneous frequency computation approach. The adaptive Fourier decomposition is a recently proposed new signal decomposition approach. The instantaneous frequency can be computed through the so called mono-components decomposed by it. Due to the fast energy convergency, the highest frequency of the signal will be discarded by the adaptive Fourier decomposition, which represents the noise of the signal in most of the situation. A new instantaneous frequency definition for a large class of so-called simple waves is also proposed in this paper. Simple wave contains a wide range of signals for which the concept instantaneous frequency has a perfect physical sense. The α-counting instantaneous frequency can be used to compute the highest frequency for a signal. Combination of these two approaches one can obtain the IFs of the whole signal. An experiment is demonstrated the computation procedure with promising results.

Chemical Characterization of Submicron Aerosol in Kanpur Region: a Source Apportionment Study

Several studies have shown the association between ambient particulate matter (PM) and adverse health effects and climate change, thus highlighting the need to limit the anthropogenic sources of PM. PM Exposure is commonly monitored as mass concentration of PM10 (particle aerodynamic diameter < 10μm) or PM2.5 (particle aerodynamic diameter < 2.5μm), although increasing toxicity with decreasing aerodynamic diameter has been reported due to increased surface area and enhanced chemical reactivity with other species. Additionally, the light scattering properties of PM increases with decreasing size. Hence, it is important to study the chemical characterization of finer fraction of the particulate matter and to identify their sources so that they can be controlled appropriately to a large extent at the sources before reaching to the receptors.

Creep Transition in a Thin Rotating Disc Having Variable Density with Inclusion

Creep stresses and strain rates have been obtained for a thin rotating disc having variable density with inclusion by using Seth-s transition theory. The density of the disc is assumed to vary radially, i.e. ( ) 0 ¤ü ¤ü r/b m - = ; ¤ü 0 and m being real positive constants. It has been observed that a disc, whose density increases radially, rotates at higher angular speed, thus decreasing the possibility of a fracture at the bore, whereas for a disc whose density decreases radially, the possibility of a fracture at the bore increases.

The Panpositionable Hamiltonicity of k-ary n-cubes

The hypercube Qn is one of the most well-known and popular interconnection networks and the k-ary n-cube Qk n is an enlarged family from Qn that keeps many pleasing properties from hypercubes. In this article, we study the panpositionable hamiltonicity of Qk n for k ≥ 3 and n ≥ 2. Let x, y of V (Qk n) be two arbitrary vertices and C be a hamiltonian cycle of Qk n. We use dC(x, y) to denote the distance between x and y on the hamiltonian cycle C. Define l as an integer satisfying d(x, y) ≤ l ≤ 1 2 |V (Qk n)|. We prove the followings: • When k = 3 and n ≥ 2, there exists a hamiltonian cycle C of Qk n such that dC(x, y) = l. • When k ≥ 5 is odd and n ≥ 2, we request that l /∈ S where S is a set of specific integers. Then there exists a hamiltonian cycle C of Qk n such that dC(x, y) = l. • When k ≥ 4 is even and n ≥ 2, we request l-d(x, y) to be even. Then there exists a hamiltonian cycle C of Qk n such that dC(x, y) = l. The result is optimal since the restrictions on l is due to the structure of Qk n by definition.

Practical Guidelines and Examples for the Users of the TMS320C6713 DSK

This paper describes how the correct endian mode of the TMS320C6713 DSK board can be identified. It also explains how the TMS320C6713 DSK board can be used in the little endian and in the big endian modes for assembly language programming in particular and for signal processing in general. Similarly, it discusses how crucially important it is for a user of the TMS320C6713 DSK board to identify the mode of operation and then use it correctly during the development stages of the assembly language programming; otherwise, it will cause unnecessary confusion and erroneous results as far as storing data into the memory and loading data from the memory is concerned. Furthermore, it highlights and strongly recommends to the users of the TMS320C6713 DSK board to be aware of the availability and importance of various display options in the Code Composer Studio (CCS) for correctly interpreting and displaying the desired data in the memory. The information presented in this paper will be of great importance and interest to those practitioners and developers who wants to use the TMS320C6713 DSK board for assembly language programming as well as input-output signal processing manipulations. Finally, examples that clearly illustrate the concept are presented.

Physical Exercise Intervention on Hypertension Patients

Chronic diseases prevailed along with economic growth as well as life style changed in recent years in Taiwan. According to the governmental statistics, hypertension related disease is the tenth of death causes with 1,816 died directly from hypertension in 2010. There were more death causes amongst the top ten had been proofed that having strong association with the hypertension, such as heart diseases, cardiovascular diseases, and diabetes. Hypertension or High blood pressure is one of the major indicators for chronic diseases, and was generally perceived as the major causes of mortality. The literature generally suggested that regular physical exercise was helpful to prevent the occurrence or to ease the progress of a hypertension. This paper reported the process and outcomes in detailed of an improvement project of physical exercise intervention specific for hypertension patients. Physical information were measured before and after the project to obtain information such as weight, waistline, cholesterol (HD & LD), blood examination, as well as self-perceived health status. The intervention project involved a six-week exercise program, of which contained three times a week, 30 minutes of tutored physical exercise intervention. The project had achieved several gains in changing the subjects- behavior in terms of many important biophysical indexes. Around 20% of the participants had significantly improved their cholesterols, BMI, and changed unhealthy behaviors. Results from the project were encouraging, and would be good reference for other samples.

Wavelet-Based Data Compression Technique for Wireless Sensor Networks

In this paper, we proposed an efficient data compression strategy exploiting the multi-resolution characteristic of the wavelet transform. We have developed a sensor node called “Smart Sensor Node; SSN". The main goals of the SSN design are lightweight, minimal power consumption, modular design and robust circuitry. The SSN is made up of four basic components which are a sensing unit, a processing unit, a transceiver unit and a power unit. FiOStd evaluation board is chosen as the main controller of the SSN for its low costs and high performance. The software coding of the implementation was done using Simulink model and MATLAB programming language. The experimental results show that the proposed data compression technique yields recover signal with good quality. This technique can be applied to compress the collected data to reduce the data communication as well as the energy consumption of the sensor and so the lifetime of sensor node can be extended.

RF Power Consumption Emulation Optimized with Interval Valued Homotopies

This paper presents a methodology towards the emulation of the electrical power consumption of the RF device during the cellular phone/handset transmission mode using the LTE technology. The emulation methodology takes the physical environmental variables and the logical interface between the baseband and the RF system as inputs to compute the emulated power dissipation of the RF device. The emulated power, in between the measured points corresponding to the discrete values of the logical interface parameters is computed as a polynomial interpolation using polynomial basis functions. The evaluation of polynomial and spline curve fitting models showed a respective divergence (test error) of 8% and 0.02% from the physically measured power consumption. The precisions of the instruments used for the physical measurements have been modeled as intervals. We have been able to model the power consumption of the RF device operating at 5MHz using homotopy between 2 continuous power consumptions of the RF device operating at the bandwidths 3MHz and 10MHz.

Simulation of Fluid Flow and Heat Transfer in Inclined Cavity using Lattice Boltzmann Method

In this paper, Lattice Boltzmann Method (LBM) is used to study laminar flow with mixed convection heat transfer inside a two-dimensional inclined lid-driven rectangular cavity with aspect ratio AR = 3. Bottom wall of the cavity is maintained at lower temperature than the top lid, and its vertical walls are assumed insulated. Top lid motion results in fluid motion inside the cavity. Inclination of the cavity causes horizontal and vertical components of velocity to be affected by buoyancy force. To include this effect, calculation procedure of macroscopic properties by LBM is changed and collision term of Boltzmann equation is modified. A computer program is developed to simulate this problem using BGK model of lattice Boltzmann method. The effects of the variations of Richardson number and inclination angle on the thermal and flow behavior of the fluid inside the cavity are investigated. The results are presented as velocity and temperature profiles, stream function contours and isotherms. It is concluded that LBM has good potential to simulate mixed convection heat transfer problems.

Sounds Alike Name Matching for Myanmar Language

Personal name matching system is the core of essential task in national citizen database, text and web mining, information retrieval, online library system, e-commerce and record linkage system. It has necessitated to the all embracing research in the vicinity of name matching. Traditional name matching methods are suitable for English and other Latin based language. Asian languages which have no word boundary such as Myanmar language still requires sounds alike matching system in Unicode based application. Hence we proposed matching algorithm to get analogous sounds alike (phonetic) pattern that is convenient for Myanmar character spelling. According to the nature of Myanmar character, we consider for word boundary fragmentation, collation of character. Thus we use pattern conversion algorithm which fabricates words in pattern with fragmented and collated. We create the Myanmar sounds alike phonetic group to help in the phonetic matching. The experimental results show that fragmentation accuracy in 99.32% and processing time in 1.72 ms.

Fuzzy Controlled Hydraulic Excavator with Model Parameter Uncertainty

The hydraulic actuated excavator, being a non-linear mobile machine, encounters many uncertainties. There are uncertainties in the hydraulic system in addition to the uncertain nature of the load. The simulation results obtained in this study show that there is a need for intelligent control of such machines and in particular interval type-2 fuzzy controller is most suitable for minimizing the position error of a typical excavator-s bucket under load variations. We consider the model parameter uncertainties such as hydraulic fluid leakage and friction. These are uncertainties which also depend up on the temperature and alter bulk modulus and viscosity of the hydraulic fluid. Such uncertainties together with the load variations cause chattering of the bucket position. The interval type-2 fuzzy controller effectively eliminates the chattering and manages to control the end-effecter (bucket) position with positional error in the order of few millimeters.

Stability and Bifurcation Analysis in a Model of Hes1 Selfregulation with Time Delay

The dynamics of a delayed mathematical model for Hes1 oscillatory expression are investigated. The linear stability of positive equilibrium and existence of local Hopf bifurcation are studied. Moreover, the global existence of large periodic solutions has been established due to the global bifurcation theorem.

Demand and Price Evolution Forecasting as Tools for Facilitating the RoadMapping Process of the Photonic Component Industry

The photonic component industry is a highly innovative industry with a large value chain. In order to ensure the growth of the industry much effort must be devoted to road mapping activities. In such activities demand and price evolution forecasting tools can prove quite useful in order to help in the roadmap refinement and update process. This paper attempts to provide useful guidelines in roadmapping of optical components and considers two models based on diffusion theory and the extended learning curve for demand and price evolution forecasting.

A Unified Framework for a Robust Conflict-Free Robot Navigation

Many environment specific methods and systems for Robot Navigation exist. However vast strides in the evolution of navigation technologies and system techniques create the need for a general unified framework that is scalable, modular and dynamic. In this paper a Unified Framework for a Robust Conflict-free Robot Navigation System that can be used for either a structured or unstructured and indoor or outdoor environments has been proposed. The fundamental design aspects and implementation issues encountered during the development of the module are discussed. The results of the deployment of three major peripheral modules of the framework namely the GSM based communication module, GIS Module and GPS module are reported in this paper.

A Zero-Cost Collar Option Applied to Materials Procurement Contracts to Reduce Price Fluctuation Risks in Construction

This study proposes a materials procurement contracts model to which the zero-cost collar option is applied for heading price fluctuation risks in construction.The material contract model based on the collar option that consists of the call option striking zone of the construction company(the buyer) following the materials price increase andthe put option striking zone of the material vendor(the supplier) following a materials price decrease. This study first determined the call option strike price Xc of the construction company by a simple approach: it uses the predicted profit at the project starting point and then determines the strike price of put option Xp that has an identical option value, which completes the zero-cost material contract.The analysis results indicate that the cost saving of the construction company increased as Xc decreased. This was because the critical level of the steel materials price increasewas set at a low level. However, as Xc decreased, Xpof a put option that had an identical option value gradually increased. Cost saving increased as Xc decreased. However, as Xp gradually increased, the risk of loss from a construction company increased as the steel materials price decreased. Meanwhile, cost saving did not occur for the construction company, because of volatility. This result originated in the zero-cost features of the two-way contract of the collar option. In the case of the regular one-way option, the transaction cost had to be subtracted from the cost saving. The transaction cost originated from an option value that fluctuated with the volatility. That is, the cost saving of the one-way option was affected by the volatility. Meanwhile, even though the collar option with zero transaction cost cut the connection between volatility and cost saving, there was a risk of exercising the put option.

An Efficient Architecture for Interleaved Modular Multiplication

Modular multiplication is the basic operation in most public key cryptosystems, such as RSA, DSA, ECC, and DH key exchange. Unfortunately, very large operands (in order of 1024 or 2048 bits) must be used to provide sufficient security strength. The use of such big numbers dramatically slows down the whole cipher system, especially when running on embedded processors. So far, customized hardware accelerators - developed on FPGAs or ASICs - were the best choice for accelerating modular multiplication in embedded environments. On the other hand, many algorithms have been developed to speed up such operations. Examples are the Montgomery modular multiplication and the interleaved modular multiplication algorithms. Combining both customized hardware with an efficient algorithm is expected to provide a much faster cipher system. This paper introduces an enhanced architecture for computing the modular multiplication of two large numbers X and Y modulo a given modulus M. The proposed design is compared with three previous architectures depending on carry save adders and look up tables. Look up tables should be loaded with a set of pre-computed values. Our proposed architecture uses the same carry save addition, but replaces both look up tables and pre-computations with an enhanced version of sign detection techniques. The proposed architecture supports higher frequencies than other architectures. It also has a better overall absolute time for a single operation.