P-ACO Approach to Assignment Problem in FMSs

One of the most important problems in production planning of flexible manufacturing system (FMS) is machine tool selection and operation allocation problem that directly influences the production costs and times .In this paper minimizing machining cost, set-up cost and material handling cost as a multi-objective problem in flexible manufacturing systems environment are considered. We present a 0-1 integer linear programming model for the multiobjective machine tool selection and operation allocation problem and due to the large scale nature of the problem, solving the problem to obtain optimal solution in a reasonable time is infeasible, Paretoant colony optimization (P-ACO) approach for solving the multiobjective problem in reasonable time is developed. Experimental results indicate effectiveness of the proposed algorithm for solving the problem.

Intrinsic Electromagnetic Fields and Atom-Field Coupling in Living Cells

The possibility of intrinsic electromagnetic fields within living cells and their resonant self-interaction and interaction with ambient electromagnetic fields is suggested on the basis of a theoretical and experimental study. It is reported that intrinsic electromagnetic fields are produced in the form of radio-frequency and infra-red photons within atoms (which may be coupled or uncoupled) in cellular structures, such as the cell cytoskeleton and plasma membrane. A model is presented for the interaction of these photons among themselves or with atoms under a dipole-dipole coupling, induced by single-photon or two-photon processes. This resonance is manifested by conspicuous field amplification and it is argued that it is possible for these resonant photons to undergo tunnelling in the form of evanescent waves to a short range (of a few nanometers to micrometres). This effect, suggested as a resonant photon tunnelling mechanism in this report, may enable these fields to act as intracellular signal communication devices and as bridges between macromolecules or cellular structures in the cell cytoskeleton, organelles or membrane. A brief overview of an experimental technique and a review of some preliminary results are presented, in the detection of these fields produced in living cell membranes under physiological conditions.

Effects of Tillage and Oil Palm Bunch Ash Plus Poultry Manure on Soil Chemical Properties, Growth and Ginger Yield

Field experiments were carried out at Owo, southwest Nigeria to evaluate the effect of different tillage practices (zero tillage with mulch (ZTM), row tillage (RT) and conventional tillage (CT), and with or without oil palm bunch ash plus poultry manure (OBA+PM) on soil chemical properties, growth and yield of ginger. The experiment was laid out in a randomized complete plot design with three replications. Soil chemical properties, growth and fresh rhizome yield reduced with frequency/intensity of tillage imposed while application of OBA+PM increased them. Among the tillage practices, the highest fresh rhizome yield (15.0t ha-1) was produced by ZTM which was significantly different from other tillage practices. Among the tillage – OBA+PM combinations, the  most satisfactorily yield (20.1t ha-1) was produced by ZTM+OBA+PM while the lowest yield (15.7t ha-1) was in CT+OBA+PM.

A Mathematical Modelling to Predict Rhamnolipid Production by Pseudomonas aeruginosa under Nitrogen Limiting Fed-Batch Fermentation

In this study, a mathematical model was proposed and the accuracy of this model was assessed to predict the growth of Pseudomonas aeruginosa and rhamnolipid production under nitrogen limiting (sodium nitrate) fed-batch fermentation. All of the parameters used in this model were achieved individually without using any data from the literature. The overall growth kinetic of the strain was evaluated using a dual-parallel substrate Monod equation which was described by several batch experimental data. Fed-batch data under different glycerol (as the sole carbon source, C/N=10) concentrations and feed flow rates were used to describe the proposed fed-batch model and other parameters. In order to verify the accuracy of the proposed model several verification experiments were performed in a vast range of initial glycerol concentrations. While the results showed an acceptable prediction for rhamnolipid production (less than 10% error), in case of biomass prediction the errors were less than 23%. It was also found that the rhamnolipid production by P. aeruginosa was more sensitive at low glycerol concentrations. Based on the findings of this work, it was concluded that the proposed model could effectively be employed for rhamnolipid production by this strain under fed-batch fermentation on up to 80 g l- 1 glycerol.

Inter-Phase Magnetic Coupling Effects on Sensorless SR Motor Control

Control of commutation of switched reluctance (SR) motor has been an area of interest for researchers for sometime now with mixed successes in addressing the inherent challenges. New technologies, processing schemes and methods have been adopted to make sensorless SR drive a reality. There are a number of conceptual, offline, analytical and online solutions in literature that have varying complexities and achieved equally varying degree of robustness and accuracies depending on the method used to address the challenges and the SR drive application. Magnetic coupling is one such challenge when using active probing techniques to determine rotor position of a SR motor from stator winding. This paper studies the effect of back-of-core saturation on the detected rotor position and presents results on measurement made on a 4- phase SR motor. The results shows that even for a four phase motor which is excited one phase at a time and using the electrically opposite phase for active position probing, the back-of-core saturation effects should not be ignored.

Improved Tropical Wood Species Recognition System based on Multi-feature Extractor and Classifier

An automated wood recognition system is designed to classify tropical wood species.The wood features are extracted based on two feature extractors: Basic Grey Level Aura Matrix (BGLAM) technique and statistical properties of pores distribution (SPPD) technique. Due to the nonlinearity of the tropical wood species separation boundaries, a pre classification stage is proposed which consists ofKmeans clusteringand kernel discriminant analysis (KDA). Finally, Linear Discriminant Analysis (LDA) classifier and KNearest Neighbour (KNN) are implemented for comparison purposes. The study involves comparison of the system with and without pre classification using KNN classifier and LDA classifier.The results show that the inclusion of the pre classification stage has improved the accuracy of both the LDA and KNN classifiers by more than 12%.

E-Books in Malaysian Primary Schools: The Terengganu Chapter

After the Terengganu state government decided to give a boost in teaching and learning through the allocation of free ebooks to all Primary five and six students; it was time to examine the presence of e-books in the classrooms. A survey was conducted on 101 students to determine how they felt about using the e-book and their experiences. It was discovered that a majority of these students liked using the e-book. However, although they had little problems using the e-book and the e-book helped to lighten the schoolbags, these new-age textbooks were not fully utilized. It is implied that perhaps the school administrators, teachers and students may not be able to overcome the unfamiliar characteristics of the e-book and its limitations.

DWM-CDD: Dynamic Weighted Majority Concept Drift Detection for Spam Mail Filtering

Although e-mail is the most efficient and popular communication method, unwanted and mass unsolicited e-mails, also called spam mail, endanger the existence of the mail system. This paper proposes a new algorithm called Dynamic Weighted Majority Concept Drift Detection (DWM-CDD) for content-based filtering. The design purposes of DWM-CDD are first to accurate the performance of the previously proposed algorithms, and second to speed up the time to construct the model. The results show that DWM-CDD can detect both sudden and gradual changes quickly and accurately. Moreover, the time needed for model construction is less than previously proposed algorithms.

Development of the Gas Safety Management System using an Intelligent Gasmeter with Wireless ZigBee Network

The gas safety management system using an intelligent gas meter we proposed is to monitor flow and pressure of gas, earthquake, temperature, smoke and leak of methane. Then our system takes safety measures to protect a serious risk by the result of an event, to communicate with a wall-pad including a gateway by zigbee network in buildings and to report the event to user by the safety management program in a server. Also, the inner cutoff valve of an intelligent gas meter is operated if any event occurred or abnormal at each sensor.

Microorganisms Isolated from Surgical Wounds Infection and Treatment with Different Natural Products and Medications

Surgical site infections (SSIs) are the most common nosocomial infection in surgical patients resulting in significant increases in postoperative morbidity and mortality. The commonly causative bacteria developed resistance to virtually all antibiotics available. The aim of this study was to isolation and identification the most common bacteria that cause SSIs in Medical Research Institute, and to compare their sensitivity to selected group of antibiotics and natural products (garlic, oregano, olive, and Nigella sativa oils). The isolated pathogens collected from infected surgical wounds were identified, and their sensitivities to the antibiotics commonly available for clinical use, and also to the different concentrations of the used natural products were investigated. The results indicate to the potential therapeutic effect of the tested natural products in treatment of surgical wound infections.

Influence of Biofertilizers on Flower Yield and Essential Oil of Chamomile ( Matricaria chamomile L.)

The main objective of this study was to determine the effects of vermicompost and amino acids on the qualitative and quantitative yield of chamomile. The experiment was conducted during the growing season of 2010 at the Alborz Medical Research Center. The Treatment groups consisted of vermicompost (0, 5, 10, 15 and 20 tons/ha) and the sprays of amino acids (budding stag, flowering stage, and budding + flowering stage). The experimental design was a factorial experiment based on Randomized Complete Block Design (RCBD) with three replications. The present results have shown that the highest plant height, flower head diameter, fresh and dry flower yield and significant essential oil content were obtained by using 20- ton vermicompost per hectare. Effects of amino acids were similar to those seen in vermicompost treatment and all measured traits were seen to be significant after the spray of amino acids at the budding + flowering stage).

Proteolysis in Serbian Traditional Dry Fermented Sausage Petrovská klobása as Influenced by Different Ripening Processes

The aim of the study was to determine how different ripening processes (traditional vs. industrial) influenced the proteolysis in traditional Serbian dry-fermented sausage Petrovská klobása. The obtained results indicated more intensive pH decline (0.7 units after 9 days) in industrially ripened products (I), what had a positive impact on drying process and proteolytic changes in these samples. Thus, moisture content in I sausages was lower at each sampling time, amounting 24.7% at the end of production period (90 days). Likewise, the process of proteolysis was more pronounced in I samples, resulting in higher contents of non-protein nitrogen (NPN) and free amino acids nitrogen (FAAN), as well as in faster and more intensive degradation of myosin (≈220 kDa), actin (≈45 kDa) and other polypeptides during processing. Consequently, the appearance and accumulation of several protein fragments were registered.

Surfactant-Free O/W-Emulsion as Drug Delivery System

Most of the drugs used for pharmaceutical purposes are poorly water-soluble drugs. About 40% of all newly discovered drugs are lipophilic and the numbers of lipophilic drugs seem to increase more and more. Drug delivery systems such as nanoparticles, micelles or liposomes are applied to improve their solubility and thus their bioavailability. Besides various techniques of solubilization, oil-in-water emulsions are often used to incorporate lipophilic drugs into the oil phase. To stabilize emulsions surface active substances (surfactants) are generally used. An alternative method to avoid the application of surfactants was of great interest. One possibility is to develop O/W-emulsion without any addition of surface active agents or the so called “surfactant-free emulsion or SFE”. The aim of this study was to develop and characterize SFE as a drug carrier by varying the production conditions. Lidocaine base was used as a model drug. The injection method was developed. Effects of ultrasound as well as of temperature on the properties of the emulsion were studied. Particle sizes and release were determined. The long-term stability up to 30 days was performed. The results showed that the surfactant-free O/W emulsions with pharmaceutical oil as drug carrier can be produced.

Analytical and Experimental Study on the Effect of Air-Core Coil Parameters on Magnetic Force Used in a Linear Optical Scanner

Today air-core coils (ACC) are a viable alternative to ferrite-core coils in a range of applications due to their low induction effect. An analytical study was carried out and the results were used as a guide to understand the relationship between the magnet-coil distance and the resulting attractive magnetic force. Four different ACC models were fabricated for experimental study. The variation in the models included the dimensions, the number of coil turns and the current supply to the coil. Comparison between the analytical and experimental results for all the models shows an average discrepancy of less than 10%. An optimized ACC design was selected for the scanner which can provide maximum magnetic force.

Anti-Counterfeiting Solution Employing Mobile RFID Environment

EPC Class-1 Generation-2 UHF tags, one of Radio frequency identification or RFID tag types, is expected that most companies are planning to use it in the supply chain in the short term and in consumer packaging in the long term due to its inexpensive cost. Because of the very cost, however, its resources are extremely scarce and it is hard to have any valuable security algorithms in it. It causes security vulnerabilities, in particular cloning the tags for counterfeits. In this paper, we propose a product authentication solution for anti-counterfeiting at application level in the supply chain and mobile RFID environment. It aims to become aware of distribution of spurious products with fake RFID tags and to provide a product authentication service to general consumers with mobile RFID devices like mobile phone or PDA which has a mobile RFID reader. We will discuss anti-counterfeiting mechanisms which are required to our proposed solution and address requirements that the mechanisms should have.

Active Intra-ONU Scheduling with Cooperative Prediction Mechanism in EPONs

Dynamic bandwidth allocation in EPONs can be generally separated into inter-ONU scheduling and intra-ONU scheduling. In our previous work, the active intra-ONU scheduling (AS) utilizes multiple queue reports (QRs) in each report message to cooperate with the inter-ONU scheduling and makes the granted bandwidth fully utilized without leaving unused slot remainder (USR). This scheme successfully solves the USR problem originating from the inseparability of Ethernet frame. However, without proper setting of threshold value in AS, the number of QRs constrained by the IEEE 802.3ah standard is not enough, especially in the unbalanced traffic environment. This limitation may be solved by enlarging the threshold value. The large threshold implies the large gap between the adjacent QRs, thus resulting in the large difference between the best granted bandwidth and the real granted bandwidth. In this paper, we integrate AS with a cooperative prediction mechanism and distribute multiple QRs to reduce the penalty brought by the prediction error. Furthermore, to improve the QoS and save the usage of queue reports, the highest priority (EF) traffic which comes during the waiting time is granted automatically by OLT and is not considered in the requested bandwidth of ONU. The simulation results show that the proposed scheme has better performance metrics in terms of bandwidth utilization and average delay for different classes of packets.

Movement of Location of Tip Vortex Cavitation along Blade Edge due to Reduction of Flow Rate in an Axial Pump

Tip vortex cavitation is one of well known patterns of cavitation phenomenon which occurs in axial pumps. This pattern of cavitation occurs due to pressure difference between the pressure and suction sides of blades of an axial pump. Since the pressure in the pressure side of the blade is higher than the pressure in its suction side, thus a very small portion of liquid flow flows back from pressure side to the suction side. This fact is cause of tip vortex cavitation and gap cavitation that may occur in axial pumps. In this paper the results of our experimental investigation about movement of tip vortex cavitation along blade edge due to reduction of pump flow rate in an axial pump is reported. Results show that reduction of pump flow rate in conjunction with increasing of outlet pressure causes movement of tip vortex cavitation along blade edge towards the blade tip. Results also show that by approaching tip vortex cavitation to the blade tip, vortex tip pattern of cavitation replaces with a cavitation phenomenon on the blade tip. Furthermore by further reduction of pump flow rate and increasing of outlet pressure, an unstable cavitation phenomenon occurs between each blade leading edge and the next blade trailing edge.

AHP and Extent Fuzzy AHP Approach for Prioritization of Performance Measurement Attributes

The decision to recruit manpower in an organization requires clear identification of the criteria (attributes) that distinguish successful from unsuccessful performance. The choice of appropriate attributes or criteria in different levels of hierarchy in an organization is a multi-criteria decision problem and therefore multi-criteria decision making (MCDM) techniques can be used for prioritization of such attributes. Analytic Hierarchy Process (AHP) is one such technique that is widely used for deciding among the complex criteria structure in different levels. In real applications, conventional AHP still cannot reflect the human thinking style as precise data concerning human attributes are quite hard to be extracted. Fuzzy logic offers a systematic base in dealing with situations, which are ambiguous or not well defined. This study aims at defining a methodology to improve the quality of prioritization of an employee-s performance measurement attributes under fuzziness. To do so, a methodology based on the Extent Fuzzy Analytic Hierarchy Process is proposed. Within the model, four main attributes such as Subject knowledge and achievements, Research aptitude, Personal qualities and strengths and Management skills with their subattributes are defined. The two approaches conventional AHP approach and the Extent Fuzzy Analytic Hierarchy Process approach have been compared on the same hierarchy structure and criteria set.

Preparation and Evaluation of New Nanocatalysts for Selective Oxidation of H2S to Sulfur

Selective oxidation of H2S to elemental sulfur in a fixed bed reactor over newly synthesized alumina nanocatalysts was physio-chemically investigated and results compared with a commercial Claus catalyst. Amongst these new materials, Al2O3- supported sodium oxide prepared with wet chemical technique and Al2O3 nanocatalyst prepared with spray pyrolysis method were the most active catalysts for selective oxidation of H2S to elemental sulfur. Other prepared nanocatalysts were quickly deactivated, mainly due to the interaction with H2S and conversion into sulfides.

Separation of Polyphenolics and Sugar by Ultrafiltration: Effects of Operating Conditions on Fouling and Diafiltration

Polyphenolics and sugar are the components of many fruit juices. In this work, the performance of ultra-filtration (UF) for separating phenolic compounds from apple juice was studied by performing batch experiments in a membrane module with an area of 0.1 m2 and fitted with a regenerated cellulose membrane of 1 kDa MWCO. The effects of various operating conditions: transmembrane pressure (3, 4, 5 bar), temperature (30, 35, 40 ºC), pH (2, 3, 4, 5), feed concentration (3, 5, 7, 10, 15 ºBrix for apple juice) and feed flow rate (1, 1.5, 1.8 L/min) on the performance were determined. The optimum operating conditions were: transmembrane pressure 4 bar, temperature 30 ºC, feed flow rate 1 – 1.8 L/min, pH 3 and 10 Brix (apple juice). After performing ultrafiltration under these conditions, the concentration of polyphenolics in retentate was increased by a factor of up to 2.7 with up to 70% recovered in the permeate and with approx. 20% of the sugar in that stream.. Application of diafiltration (addition of water to the concentrate) can regain the flux by a factor of 1.5, which has been decreased due to fouling. The material balance performed on the process has shown the amount of deposits on the membrane and the extent of fouling in the system. In conclusion, ultrafiltration has been demonstrated as a potential technology to separate the polyphenolics and sugars from their mixtures and can be applied to remove sugars from fruit juice.