Multi-Objective Planning and Operation of Water Supply Systems Subject to Climate Change

Many water supply systems in Australia are currently undergoing significant reconfiguration due to reductions in long term average rainfall and resulting low inflows to water supply reservoirs since the second half of the 20th century. When water supply systems undergo change, it is necessary to develop new operating rules, which should consider climate, because the climate change is likely to further reduce inflows. In addition, water resource systems are increasingly intended to be operated to meet complex and multiple objectives representing social, economic, environmental and sustainability criteria. This is further complicated by conflicting preferences on these objectives from diverse stakeholders. This paper describes a methodology to develop optimum operating rules for complex multi-reservoir systems undergoing significant change, considering all of the above issues. The methodology is demonstrated using the Grampians water supply system in northwest Victoria, Australia. Initial work conducted on the project is also presented in this paper.

Application of Functional Network to Solving Classification Problems

In this paper two models using a functional network were employed to solving classification problem. Functional networks are generalized neural networks, which permit the specification of their initial topology using knowledge about the problem at hand. In this case, and after analyzing the available data and their relations, we systematically discuss a numerical analysis method used for functional network, and apply two functional network models to solving XOR problem. The XOR problem that cannot be solved with two-layered neural network can be solved by two-layered functional network, which reveals a potent computational power of functional networks, and the performance of the proposed model was validated using classification problems.

The Mechanistic and Oxidative Study of Methomyl and Parathion Degradation by Fenton Process

The purpose of this study is to investigate the chemical degradation of the organophosphorus pesticide of parathion and carbamate insecticide of methomyl in the aqueous phase through Fenton process. With the employment of batch Fenton process, the degradation of the two selected pesticides at different pH, initial concentration, humic acid concentration, and Fenton reagent dosages was explored. The Fenton process was found effective to degrade parathion and methomyl. The optimal dosage of Fenton reagents (i.e., molar concentration ratio of H2O2 to Fe2+) at pH 7 for parathion degradation was equal to 3, which resulted in 50% removal of parathion. Similarly, the optimal dosage for methomyl degradation was 1, resulting in 80% removal of methomyl. This study also found that the presence of humic substances has enhanced pesticide degradation by Fenton process significantly. The mass spectroscopy results showed that the hydroxyl free radical may attack the single bonds with least energy of investigated pesticides to form smaller molecules which is more easily to degrade either through physio-chemical or bilolgical processes.

Biodiesel Fuel Production by Methanolysis of Fish Oil Derived from the Discarded Parts of Fish Catalyzed by Carica papaya Lipase

In this paper, naturally immobilized lipase, Carica papaya lipase, catalyzed biodiesel production from fish oil was studied. The refined fish oil, extracted from the discarded parts of fish, was used as a starting material for biodiesel production. The effects of molar ratio of oil: methanol, lipase dosage, initial water activity of lipase, temperature and solvent were investigated. It was found that Carica papaya lipase was suitable for methanolysis of fish oil to produce methyl ester. The maximum yield of methyl ester could reach up to 83% with the optimal reaction conditions: oil: methanol molar ratio of 1: 4, 20% (based on oil) of lipase, initial water activity of lipase at 0.23 and 20% (based on oil) of tert-butanol at 40oC after 18 h of reaction time. There was negligible loss in lipase activity even after repeated use for 30 cycles.

SySRA: A System of a Continuous Speech Recognition in Arab Language

We report in this paper the model adopted by our system of continuous speech recognition in Arab language SySRA and the results obtained until now. This system uses the database Arabdic-10 which is a corpus of word for the Arab language and which was manually segmented. Phonetic decoding is represented by an expert system where the knowledge base is translated in the form of production rules. This expert system transforms a vocal signal into a phonetic lattice. The higher level of the system takes care of the recognition of the lattice thus obtained by deferring it in the form of written sentences (orthographical Form). This level contains initially the lexical analyzer which is not other than the module of recognition. We subjected this analyzer to a set of spectrograms obtained by dictating a score of sentences in Arab language. The rate of recognition of these sentences is about 70% which is, to our knowledge, the best result for the recognition of the Arab language. The test set consists of twenty sentences from four speakers not having taken part in the training.

Optimization the Process of Osmo – Convective Drying of Edible Button Mushrooms using Response Surface Methodology (RSM)

Simultaneous effects of temperature, immersion time, salt concentration, sucrose concentration, pressure and convective dryer temperature on the combined osmotic dehydration - convective drying of edible button mushrooms were investigated. Experiments were designed according to Central Composite Design with six factors each at five different levels. Response Surface Methodology (RSM) was used to determine the optimum processing conditions that yield maximum water loss and rehydration ratio and minimum solid gain and shrinkage in osmotic-convective drying of edible button mushrooms. Applying surfaces profiler and contour plots optimum operation conditions were found to be temperature of 39 °C, immersion time of 164 min, salt concentration of 14%, sucrose concentration of 53%, pressure of 600 mbar and drying temperature of 40 °C. At these optimum conditions, water loss, solid gain, rehydration ratio and shrinkage were found to be 63.38 (g/100 g initial sample), 3.17 (g/100 g initial sample), 2.26 and 7.15%, respectively.

Photo-Fenton Treatment of 1,3-dichloro-2- Propanol Aqueous Solutions Using UV Radiation and H2O2 – A Kinetic Study

The photochemical and photo-Fenton oxidation of 1,3-dichloro-2-propanol was performed in a batch reactor, at room temperature, using UV radiation, H2O2 as oxidant, and Fenton-s reagent. The effect of the oxidative agent-s initial concentration was investigated as well as the effect of the initial concentration of Fe(II) by following the target compound degradation, the total organic carbon removal and the chloride ion production. Also, from the kinetic analysis conducted and proposed reaction scheme it was deduced that the addition of Fe(II) significantly increases the production and the further oxidation of the chlorinated intermediates.

Speaker Independent Quranic Recognizer Basedon Maximum Likelihood Linear Regression

An automatic speech recognition system for the formal Arabic language is needed. The Quran is the most formal spoken book in Arabic, it is spoken all over the world. In this research, an automatic speech recognizer for Quranic based speakerindependent was developed and tested. The system was developed based on the tri-phone Hidden Markov Model and Maximum Likelihood Linear Regression (MLLR). The MLLR computes a set of transformations which reduces the mismatch between an initial model set and the adaptation data. It uses the regression class tree, as well as, estimates a set of linear transformations for the mean and variance parameters of a Gaussian mixture HMM system. The 30th Chapter of the Quran, with five of the most famous readers of the Quran, was used for the training and testing of the data. The chapter includes about 2000 distinct words. The advantages of using the Quranic verses as the database in this developed recognizer are the uniqueness of the words and the high level of orderliness between verses. The level of accuracy from the tested data ranged 68 to 85%.

Kinetics Studies on Biological Treatment of Tannery Wastewater Using Mixed Culture

In this study, aerobic digestion of tannery industry wastewater was carried out using mixed culture obtained from common effluent treatment plant treating tannery wastewater. The effect of pH, temperature, inoculum concentration, agitation speed and initial substrate concentration on the reduction of organic matters were found. The optimum conditions for COD reduction was found to be pH - 7 (60%), temperature - 30ÔùªC (61%), inoculum concentration - 2% (61%), agitation speed - 150rpm (65%) and initial substrate concentration - 1560 mg COD/L (74%). Kinetics studies were carried by using Monod model, First order, Diffusional model and Singh model. From the results it was found that the Monod model suits well for the degradation of tannery wastewater using mixed microbial consortium.

A Consistency Protocol Multi-Layer for Replicas Management in Large Scale Systems

Large scale systems such as computational Grid is a distributed computing infrastructure that can provide globally available network resources. The evolution of information processing systems in Data Grid is characterized by a strong decentralization of data in several fields whose objective is to ensure the availability and the reliability of the data in the reason to provide a fault tolerance and scalability, which cannot be possible only with the use of the techniques of replication. Unfortunately the use of these techniques has a height cost, because it is necessary to maintain consistency between the distributed data. Nevertheless, to agree to live with certain imperfections can improve the performance of the system by improving competition. In this paper, we propose a multi-layer protocol combining the pessimistic and optimistic approaches conceived for the data consistency maintenance in large scale systems. Our approach is based on a hierarchical representation model with tree layers, whose objective is with double vocation, because it initially makes it possible to reduce response times compared to completely pessimistic approach and it the second time to improve the quality of service compared to an optimistic approach.

Defluoridation of Water by Schwertmannite

In the present study Schwertmannite (an iron oxide hydroxide) is selected as an adsorbent for defluoridation of water. The adsorbent was prepared by wet chemical process and was characterized by SEM, XRD and BET. The fluoride adsorption efficiency of the prepared adsorbent was determined with respect to contact time, initial fluoride concentration, adsorbent dose and pH of the solution. The batch adsorption data revealed that the fluoride adsorption efficiency was highly influenced by the studied factors. Equilibrium was attained within one hour of contact time indicating fast kinetics and the adsorption data followed pseudo second order kinetic model. Equilibrium isotherm data fitted to both Langmuir and Freundlich isotherm models for a concentration range of 5-30 mg/L. The adsorption system followed Langmuir isotherm model with maximum adsorption capacity of 11.3 mg/g. The high adsorption capacity of Schwertmannite points towards the potential of this adsorbent for fluoride removal from aqueous medium.

Design Process of the Fixing Pipes in the Guide Pipe Anchor System for Cable-Stayed Bridges

For the efficient and safe use of the cable-stayed bridge, a design based on the detailed local analysis of the cable anchor system is required. Also, a theoretical design process for the anchor system should be prepared and reviewed. Generally, the size of the fixing pipe in the anchor system is decided according to the specifications prepared by cable-manufacturing companies, and accordingly, there is difficulty determining the initial inner diameters of the fixing pipes. As such, there is no choice but to use the products with the existing sizes. In this study, the existing design process of the fixing pipe, is a type of guide pipe anchor in the cable anchor system, is reviewed, a formula determining the thickness of the fixing pipe is proposed, and the convenience and validity of the suggested equation is compared with the results of the existing designs to verify its convenience and validity.

Optimization of the Process of Osmo – Convective Drying of Edible Button Mushrooms using Response Surface Methodology (RSM)

Simultaneous effects of temperature, immersion time, salt concentration, sucrose concentration, pressure and convective dryer temperature on the combined osmotic dehydration - convective drying of edible button mushrooms were investigated. Experiments were designed according to Central Composite Design with six factors each at five different levels. Response Surface Methodology (RSM) was used to determine the optimum processing conditions that yield maximum water loss and rehydration ratio and minimum solid gain and shrinkage in osmotic-convective drying of edible button mushrooms. Applying surfaces profiler and contour plots optimum operation conditions were found to be temperature of 39 °C, immersion time of 164 min, salt concentration of 14%, sucrose concentration of 53%, pressure of 600 mbar and drying temperature of 40 °C. At these optimum conditions, water loss, solid gain, rehydration ratio and shrinkage were found to be 63.38 (g/100 g initial sample), 3.17 (g/100 g initial sample), 2.26 and 7.15%, respectively.

Development of a Kinetic Model for the Photodegradation of 4-Chlorophenol using a XeBr Excilamp

Excilamps are new UV sources with great potential for application in wastewater treatment. In the present work, a XeBr excilamp emitting radiation at 283 nm has been used for the photodegradation of 4-chlorophenol within a range of concentrations from 50 to 500 mg L-1. Total removal of 4-chlorophenol was achieved for all concentrations assayed. The two main photoproduct intermediates formed along the photodegradation process, benzoquinone and hydroquinone, although not being completely removed, remain at very low residual concentrations. Such concentrations are insignificant compared to the 4-chlorophenol initial ones and non-toxic. In order to simulate the process and scaleup, a kinetic model has been developed and validated from the experimental data.

Memory Effects in Randomly Perturbed Nematic Liquid Crystals

We study the typical domain size and configuration character of a randomly perturbed system exhibiting continuous symmetry breaking. As a model system we use rod-like objects within a cubic lattice interacting via a Lebwohl–Lasher-type interaction. We describe their local direction with a headless unit director field. An example of such systems represents nematic LC or nanotubes. We further introduce impurities of concentration p, which impose the random anisotropy field-type disorder to directors. We study the domain-type pattern of molecules as a function of p, anchoring strength w between a neighboring director and impurity, temperature, history of samples. In simulations we quenched the directors either from the random or homogeneous initial configuration. Our results show that a history of system strongly influences: i) the average domain coherence length; and ii) the range of ordering in the system. In the random case the obtained order is always short ranged (SR). On the contrary, in the homogeneous case, SR is obtained only for strong enough anchoring and large enough concentration p. In other cases, the ordering is either of quasi long range (QLR) or of long range (LR). We further studied memory effects for the random initial configuration. With increasing external ordering field B either QLR or LR is realized.

Flexible Laser Reduced Graphene Oxide/ MnO2 Electrode for Supercapacitor Applications

We succeeded to produce a high performance and flexible graphene/Manganese dioxide (G/MnO2) electrode coated on flexible polyethylene terephthalate (PET) substrate. The graphene film is initially synthesized by drop-casting the graphene oxide (GO) solution on the PET substrate, followed by simultaneous reduction and patterning of the dried film using carbon dioxide (CO2) laser beam with power of 1.8 W. Potentiostatic Anodic Deposition method was used to deposit thin film of MnO2 with different loading mass 10 – 50 and 100 μg.cm-2 on the pre-prepared graphene film. The electrodes were fully characterized in terms of structure, morphology, and electrochemical performance. A maximum specific capacitance of 973 F.g-1 was attributed when depositing 50μg.cm-2 MnO2 on the laser reduced graphene oxide rGO (or G/50MnO2) and over 92% of its initial capacitance was retained after 1000 cycles. The good electrochemical performance and long-term cycling stability make our proposed approach a promising candidate in the supercapacitor applications.

Numerical Optimization within Vector of Parameters Estimation in Volatility Models

In this paper usefulness of quasi-Newton iteration procedure in parameters estimation of the conditional variance equation within BHHH algorithm is presented. Analytical solution of maximization of the likelihood function using first and second derivatives is too complex when the variance is time-varying. The advantage of BHHH algorithm in comparison to the other optimization algorithms is that requires no third derivatives with assured convergence. To simplify optimization procedure BHHH algorithm uses the approximation of the matrix of second derivatives according to information identity. However, parameters estimation in a/symmetric GARCH(1,1) model assuming normal distribution of returns is not that simple, i.e. it is difficult to solve it analytically. Maximum of the likelihood function can be founded by iteration procedure until no further increase can be found. Because the solutions of the numerical optimization are very sensitive to the initial values, GARCH(1,1) model starting parameters are defined. The number of iterations can be reduced using starting values close to the global maximum. Optimization procedure will be illustrated in framework of modeling volatility on daily basis of the most liquid stocks on Croatian capital market: Podravka stocks (food industry), Petrokemija stocks (fertilizer industry) and Ericsson Nikola Tesla stocks (information-s-communications industry).

Local Error Control in the RK5GL3 Method

The RK5GL3 method is a numerical method for solving initial value problems in ordinary differential equations, and is based on a combination of a fifth-order Runge-Kutta method and 3-point Gauss-Legendre quadrature. In this paper we describe an effective local error control algorithm for RK5GL3, which uses local extrapolation with an eighth-order Runge-Kutta method in tandem with RK5GL3, and a Hermite interpolating polynomial for solution estimation at the Gauss-Legendre quadrature nodes.

Unsteady Laminar Boundary Layer Forced Flow in the Region of the Stagnation Point on a Stretching Flat Sheet

This paper analyses the unsteady, two-dimensional stagnation point flow of an incompressible viscous fluid over a flat sheet when the flow is started impulsively from rest and at the same time, the sheet is suddenly stretched in its own plane with a velocity proportional to the distance from the stagnation point. The partial differential equations governing the laminar boundary layer forced convection flow are non-dimensionalised using semi-similar transformations and then solved numerically using an implicit finitedifference scheme known as the Keller-box method. Results pertaining to the flow and heat transfer characteristics are computed for all dimensionless time, uniformly valid in the whole spatial region without any numerical difficulties. Analytical solutions are also obtained for both small and large times, respectively representing the initial unsteady and final steady state flow and heat transfer. Numerical results indicate that the velocity ratio parameter is found to have a significant effect on skin friction and heat transfer rate at the surface. Furthermore, it is exposed that there is a smooth transition from the initial unsteady state flow (small time solution) to the final steady state (large time solution).

Review and Experiments on SDMSCue

In this work, I present a review on Sparse Distributed Memory for Small Cues (SDMSCue), a variant of Sparse Distributed Memory (SDM) that is capable of handling small cues. I then conduct and show some cognitive experiments on SDMSCue to test its cognitive soundness compared to SDM. Small cues refer to input cues that are presented to memory for reading associations; but have many missing parts or fields from them. The original SDM failed to handle such a problem. SDMSCue handles and overcomes this pitfall. The main idea in SDMSCue; is the repeated projection of the semantic space on smaller subspaces; that are selected based on the input cue length and pattern. This process allows for Read/Write operations using an input cue that is missing a large portion. SDMSCue is augmented with the use of genetic algorithms for memory allocation and initialization. I claim that SDM functionality is a subset of SDMSCue functionality.