Further Investigation of Elastic Scattering of 16O on 12C at Different Energies

The aim of this work is to study the elastic transfer phenomenon which takes place in the elastic scattering of 16O on 12C at energies near the Coulomb barrier. Where, the angular distribution decrease steadily with increasing the scattering angle, then the cross section will increase at backward angles due to the α-transfer process. This reaction was also studied at different energies for tracking the nuclear rainbow phenomenon. The experimental data of the angular distribution at these energies were compared to the calculation predictions. The optical potential codes such as SPIVAL and Distorted Wave Born Approximation (DWUCK5) were used in analysis.

Grid-HPA: Predicting Resource Requirements of a Job in the Grid Computing Environment

For complete support of Quality of Service, it is better that environment itself predicts resource requirements of a job by using special methods in the Grid computing. The exact and correct prediction causes exact matching of required resources with available resources. After the execution of each job, the used resources will be saved in the active database named "History". At first some of the attributes will be exploit from the main job and according to a defined similarity algorithm the most similar executed job will be exploited from "History" using statistic terms such as linear regression or average, resource requirements will be predicted. The new idea in this research is based on active database and centralized history maintenance. Implementation and testing of the proposed architecture results in accuracy percentage of 96.68% to predict CPU usage of jobs and 91.29% of memory usage and 89.80% of the band width usage.

A Critics Study of Neural Networks Applied to ion-Exchange Process

This paper presents a critical study about the application of Neural Networks to ion-exchange process. Ionexchange is a complex non-linear process involving many factors influencing the ions uptake mechanisms from the pregnant solution. The following step includes the elution. Published data presents empirical isotherm equations with definite shortcomings resulting in unreliable predictions. Although Neural Network simulation technique encounters a number of disadvantages including its “black box", and a limited ability to explicitly identify possible causal relationships, it has the advantage to implicitly handle complex nonlinear relationships between dependent and independent variables. In the present paper, the Neural Network model based on the back-propagation algorithm Levenberg-Marquardt was developed using a three layer approach with a tangent sigmoid transfer function (tansig) at hidden layer with 11 neurons and linear transfer function (purelin) at out layer. The above mentioned approach has been used to test the effectiveness in simulating ion exchange processes. The modeling results showed that there is an excellent agreement between the experimental data and the predicted values of copper ions removed from aqueous solutions.

Numerical Simulation of the Flow Field around a 30° Inclined Flat Plate

This paper presents a CFD analysis of the flow around a 30° inclined flat plate of infinite span. Numerical predictions have been compared to experimental measurements, in order to assess the potential of the finite volume code of determining the aerodynamic forces acting on a flat plate invested by a fluid stream of infinite extent. Several turbulence models and spatial node distributions have been tested and flow field characteristics in the neighborhood of the flat plate have been numerically investigated, allowing the development of a preliminary procedure to be used as guidance in selecting the appropriate grid configuration and the corresponding turbulence model for the prediction of the flow field over a twodimensional inclined plate.

Wheat Yield Prediction through Agro Meteorological Indices for Ardebil District

Wheat prediction was carried out using different meteorological variables together with agro meteorological indices in Ardebil district for the years 2004-2005 & 2005–2006. On the basis of correlation coefficients, standard error of estimate as well as relative deviation of predicted yield from actual yield using different statistical models, the best subset of agro meteorological indices were selected including daily minimum temperature (Tmin), accumulated difference of maximum & minimum temperatures (TD), growing degree days (GDD), accumulated water vapor pressure deficit (VPD), sunshine hours (SH) & potential evapotranspiration (PET). Yield prediction was done two months in advance before harvesting time which was coincide with commencement of reproductive stage of wheat (5th of June). It revealed that in the final statistical models, 83% of wheat yield variability was accounted for variation in above agro meteorological indices.

Prediction of the Total Decay Heat from Fast Neutron Fission of 235U and 239Pu

The analytical prediction of the decay heat results from the fast neutron fission of actinides was initiated under a project, 10-MAT1134-3, funded by king Abdulaziz City of Science and Technology (KASCT), Long-Term Comprehensive National Plan for Science, Technology and Innovations, managed by a team from King Abdulaziz University (KAU), Saudi Arabia, and supervised by Argonne National Laboratory (ANL) has collaborated with KAU's team to assist in the computational analysis. In this paper, the numerical solution of coupled linear differential equations that describe the decays and buildups of minor fission product MFA, has been used to predict the total decay heat and its components from the fast neutron fission of 235U and 239Pu. The reliability of the present approach is illustrated via systematic comparisons with the measurements reported by the University of Tokyo, in YAYOI reactor.

Selecting an Advanced Creep Model or a Sophisticated Time-Integration? A New Approach by Means of Sensitivity Analysis

The prediction of long-term deformations of concrete and reinforced concrete structures has been a field of extensive research and several different creep models have been developed so far. Most of the models were developed for constant concrete stresses, thus, in case of varying stresses a specific superposition principle or time-integration, respectively, is necessary. Nowadays, when modeling concrete creep the engineering focus is rather on the application of sophisticated time-integration methods than choosing the more appropriate creep model. For this reason, this paper presents a method to quantify the uncertainties of creep prediction originating from the selection of creep models or from the time-integration methods. By adapting variance based global sensitivity analysis, a methodology is developed to quantify the influence of creep model selection or choice of time-integration method. Applying the developed method, general recommendations how to model creep behavior for varying stresses are given.

Computational Fluid Dynamics Expert System using Artificial Neural Networks

The design of a modern aircraft is based on three pillars: theoretical results, experimental test and computational simulations. As a results of this, Computational Fluid Dynamic (CFD) solvers are widely used in the aeronautical field. These solvers require the correct selection of many parameters in order to obtain successful results. Besides, the computational time spent in the simulation depends on the proper choice of these parameters. In this paper we create an expert system capable of making an accurate prediction of the number of iterations and time required for the convergence of a computational fluid dynamic (CFD) solver. Artificial neural network (ANN) has been used to design the expert system. It is shown that the developed expert system is capable of making an accurate prediction the number of iterations and time required for the convergence of a CFD solver.

Artificial Intelligence Model to Predict Surface Roughness of Ti-15-3 Alloy in EDM Process

Conventionally the selection of parameters depends intensely on the operator-s experience or conservative technological data provided by the EDM equipment manufacturers that assign inconsistent machining performance. The parameter settings given by the manufacturers are only relevant with common steel grades. A single parameter change influences the process in a complex way. Hence, the present research proposes artificial neural network (ANN) models for the prediction of surface roughness on first commenced Ti-15-3 alloy in electrical discharge machining (EDM) process. The proposed models use peak current, pulse on time, pulse off time and servo voltage as input parameters. Multilayer perceptron (MLP) with three hidden layer feedforward networks are applied. An assessment is carried out with the models of distinct hidden layer. Training of the models is performed with data from an extensive series of experiments utilizing copper electrode as positive polarity. The predictions based on the above developed models have been verified with another set of experiments and are found to be in good agreement with the experimental results. Beside this they can be exercised as precious tools for the process planning for EDM.

A Comparison of Adaline and MLP Neural Network based Predictors in SIR Estimation in Mobile DS/CDMA Systems

In this paper we compare the response of linear and nonlinear neural network-based prediction schemes in prediction of received Signal-to-Interference Power Ratio (SIR) in Direct Sequence Code Division Multiple Access (DS/CDMA) systems. The nonlinear predictor is Multilayer Perceptron MLP and the linear predictor is an Adaptive Linear (Adaline) predictor. We solve the problem of complexity by using the Minimum Mean Squared Error (MMSE) principle to select the optimal predictors. The optimized Adaline predictor is compared to optimized MLP by employing noisy Rayleigh fading signals with 1.8 GHZ carrier frequency in an urban environment. The results show that the Adaline predictor can estimates SIR with the same error as MLP when the user has the velocity of 5 km/h and 60 km/h but by increasing the velocity up-to 120 km/h the mean squared error of MLP is two times more than Adaline predictor. This makes the Adaline predictor (with lower complexity) more suitable than MLP for closed-loop power control where efficient and accurate identification of the time-varying inverse dynamics of the multi path fading channel is required.

Prediction the Deformation in Upsetting Process by Neural Network and Finite Element

In this paper back-propagation artificial neural network (BPANN) is employed to predict the deformation of the upsetting process. To prepare a training set for BPANN, some finite element simulations were carried out. The input data for the artificial neural network are a set of parameters generated randomly (aspect ratio d/h, material properties, temperature and coefficient of friction). The output data are the coefficient of polynomial that fitted on barreling curves. Neural network was trained using barreling curves generated by finite element simulations of the upsetting and the corresponding material parameters. This technique was tested for three different specimens and can be successfully employed to predict the deformation of the upsetting process

The State-of-Art Environmental Impact Assessment: An Overview

The research on the effectiveness of environmental assessment (EA) is a milestone effort to evaluate the state of the field, including many contributors related with a lot of countries since more than two decades. In the 1960s, there was a surge of interest between modern industrialized countries over unexpected opposite effects of technical invention. The interest led to choice of approaches for assessing and prediction the impressions of technology and advancement for social and economic, state health and safety, solidity and the circumstances. These are consisting of risk assessment, technology assessment, environmental impact assessment and costbenefit analysis. In this research contribution, the authors have described the research status for environmental assessment in cumulative environmental system. This article discusses the methods for cumulative effect assessment (CEA).

Parameter Sensitivity Analysis of Artificial Neural Network for Predicting Water Turbidity

The present study focuses on the discussion over the parameter of Artificial Neural Network (ANN). Sensitivity analysis is applied to assess the effect of the parameters of ANN on the prediction of turbidity of raw water in the water treatment plant. The result shows that transfer function of hidden layer is a critical parameter of ANN. When the transfer function changes, the reliability of prediction of water turbidity is greatly different. Moreover, the estimated water turbidity is less sensitive to training times and learning velocity than the number of neurons in the hidden layer. Therefore, it is important to select an appropriate transfer function and suitable number of neurons in the hidden layer in the process of parameter training and validation.

Large-Eddy Simulation of Hypersonic Configuration Aerodynamics

LES with mixed subgrid-scale model has been used to simulate aerodynamic performance of hypersonic configuration. The simulation was conducted to replicate conditions and geometry of a model which has been previously tested. LES Model has been successful in predict pressure coefficient with the max error 1.5% besides afterbody. But in the high Mach number condition, it is poor in predict ability and product 12.5% error. The calculation error are mainly conducted by the distribution swirling. The fact of poor ability in the high Mach number and afterbody region indicated that the mixed subgrid-scale model should be improved in large eddied especially in hypersonic separate region. In the condition of attach and sideslip flight, the calculation results have waves. LES are successful in the prediction the pressure wave in hypersonic flow.

Prediction of Bath Temperature Using Neural Networks

In this work, we consider an application of neural networks in LD converter. Application of this approach assumes a reliable prediction of steel temperature and reduces a reblow ratio in steel work. It has been applied a conventional model to charge calculation, the obtained results by this technique are not always good, this is due to the process complexity. Difficulties are mainly generated by the noisy measurement and the process non linearities. Artificial Neural Networks (ANNs) have become a powerful tool for these complex applications. It is used a backpropagation algorithm to learn the neural nets. (ANNs) is used to predict the steel bath temperature in oxygen converter process for the end condition. This model has 11 inputs process variables and one output. The model was tested in steel work, the obtained results by neural approach are better than the conventional model.

Yield Prediction Using Support Vectors Based Under-Sampling in Semiconductor Process

It is important to predict yield in semiconductor test process in order to increase yield. In this study, yield prediction means finding out defective die, wafer or lot effectively. Semiconductor test process consists of some test steps and each test includes various test items. In other world, test data has a big and complicated characteristic. It also is disproportionably distributed as the number of data belonging to FAIL class is extremely low. For yield prediction, general data mining techniques have a limitation without any data preprocessing due to eigen properties of test data. Therefore, this study proposes an under-sampling method using support vector machine (SVM) to eliminate an imbalanced characteristic. For evaluating a performance, randomly under-sampling method is compared with the proposed method using actual semiconductor test data. As a result, sampling method using SVM is effective in generating robust model for yield prediction.

Biokinetics of Coping Mechanism of Freshwater tilapia following Exposure to Waterborne and Dietary Copper

The purpose of this study was to understand the main sources of copper (Cu) accumulation in target organs of tilapia (Oreochromis mossambicus) and to investigate how the organism mediate the process of Cu accumulation under prolonged conditions. By measuring both dietary and waterborne Cu accumulation and total concentrations in tilapia with biokinetic modeling approach, we were able to clarify the biokinetic coping mechanisms for the long term Cu accumulation. This study showed that water and food are both the major source of Cu for the muscle and liver of tilapia. This implied that control the Cu concentration in these two routes will be correlated to the Cu bioavailability for tilapia. We found that exposure duration and level of waterborne Cu drove the Cu accumulation in tilapia. The ability for Cu biouptake and depuration in organs of tilapia were actively mediated under prolonged exposure conditions. Generally, the uptake rate, depuration rate and net bioaccumulation ability in all selected organs decreased with the increasing level of waterborne Cu and extension of exposure duration.Muscle tissues accounted for over 50%of the total accumulated Cu and played a key role in buffering the Cu burden in the initial period of exposure, alternatively, the liver acted a more important role in the storage of Cu with the extension of exposures. We concluded that assumption of the constant biokinetic rates could lead to incorrect predictions with overestimating the long-term Cu accumulation in ecotoxicological risk assessments.

Dust Storm Prediction Using ANNs Technique (A Case Study: Zabol City)

Dust storms are one of the most costly and destructive events in many desert regions. They can cause massive damages both in natural environments and human lives. This paper is aimed at presenting a preliminary study on dust storms, as a major natural hazard in arid and semi-arid regions. As a case study, dust storm events occurred in Zabol city located in Sistan Region of Iran was analyzed to diagnose and predict dust storms. The identification and prediction of dust storm events could have significant impacts on damages reduction. Present models for this purpose are complicated and not appropriate for many areas with poor-data environments. The present study explores Gamma test for identifying inputs of ANNs model, for dust storm prediction. Results indicate that more attempts must be carried out concerning dust storms identification and segregate between various dust storm types.

An Examination of the Factors Influencing Software Development Effort

Effective evaluation of software development effort is an important aspect of successful project management. Based on a large database with 4106 projects ever developed, this study statistically examines the factors that influence development effort. The factors found to be significant for effort are project size, average number of developers that worked on the project, type of development, development language, development platform, and the use of rapid application development. Among these factors, project size is the most critical cost driver. Unsurprisingly, this study found that the use of CASE tools does not necessarily reduce development effort, which adds support to the claim that the use of tools is subtle. As many of the current estimation models are rarely or unsuccessfully used, this study proposes a parsimonious parametric model for the prediction of effort which is both simple and more accurate than previous models.

Pore Model Prediction of CH4 Separation from HS Using PTMSP and γ -Alumina Membranes

The main aim of this work is to develop a model of hydrogen sulfide (H2S) separation from natural gas by using membrane separation technology. The model is developed by incorporating three diffusion mechanisms which are Knudsen, viscous and surface diffusion towards membrane selectivity and permeability. The findings from the simulation result shows that the permeability of the gas is dependent toward the pore size of the membrane, operating pressure, operating temperature as well as feed composition. The permeability of methane has the highest value for Poly (1-trimethylsilyl-1-propyne ) PTMSP membrane at pore size of 0.1nm and decreasing toward a minimum peak at pore range 1 to 1.5 nm as pore size increased before it increase again for pore size is greater than 1.5 nm. On the other hand, the permeability of hydrogen sulfide is found to increase almost proportionally with the increase of membrane pore size. Generally, the increase of pressure will increase the permeability of gas since more driving force is provided to the system while increasing of temperature would decrease the permeability due to the surface diffusion drop off effect. A corroboration of the simulation result also showed a good agreement with the experimental data.