Use of Persuasive Technology to Change End-Users- IT Security Aware Behaviour: A Pilot Study

Persuasive technology has been applied in marketing, health, environmental conservation, safety and other domains and is found to be quite effective in changing people-s attitude and behaviours. This research extends the application domains of persuasive technology to information security awareness and uses a theory-driven approach to evaluate the effectiveness of a web-based program developed based on the principles of persuasive technology to improve the information security awareness of end users. The findings confirm the existence of a very strong effect of the webbased program in raising users- attitude towards information security aware behavior. This finding is useful to the IT researchers and practitioners in developing appropriate and effective education strategies for improving the information security attitudes for endusers.

EZW Coding System with Artificial Neural Networks

Image compression plays a vital role in today-s communication. The limitation in allocated bandwidth leads to slower communication. To exchange the rate of transmission in the limited bandwidth the Image data must be compressed before transmission. Basically there are two types of compressions, 1) LOSSY compression and 2) LOSSLESS compression. Lossy compression though gives more compression compared to lossless compression; the accuracy in retrievation is less in case of lossy compression as compared to lossless compression. JPEG, JPEG2000 image compression system follows huffman coding for image compression. JPEG 2000 coding system use wavelet transform, which decompose the image into different levels, where the coefficient in each sub band are uncorrelated from coefficient of other sub bands. Embedded Zero tree wavelet (EZW) coding exploits the multi-resolution properties of the wavelet transform to give a computationally simple algorithm with better performance compared to existing wavelet transforms. For further improvement of compression applications other coding methods were recently been suggested. An ANN base approach is one such method. Artificial Neural Network has been applied to many problems in image processing and has demonstrated their superiority over classical methods when dealing with noisy or incomplete data for image compression applications. The performance analysis of different images is proposed with an analysis of EZW coding system with Error Backpropagation algorithm. The implementation and analysis shows approximately 30% more accuracy in retrieved image compare to the existing EZW coding system.

The Application of HLLC Numerical Solver to the Reduced Multiphase Model

The performance of high-resolution schemes is investigated for unsteady, inviscid and compressible multiphase flows. An Eulerian diffuse interface approach has been chosen for the simulation of multicomponent flow problems. The reduced fiveequation and seven equation models are used with HLL and HLLC approximation. The authors demonstrated the advantages and disadvantages of both seven equations and five equations models studying their performance with HLL and HLLC algorithms on simple test case. The seven equation model is based on two pressure, two velocity concept of Baer–Nunziato [10], while five equation model is based on the mixture velocity and pressure. The numerical evaluations of two variants of Riemann solvers have been conducted for the classical one-dimensional air-water shock tube and compared with analytical solution for error analysis.

Wind Speed Data Analysis using Wavelet Transform

Renewable energy systems are becoming a topic of great interest and investment in the world. In recent years wind power generation has experienced a very fast development in the whole world. For planning and successful implementations of good wind power plant projects, wind potential measurements are required. In these projects, of great importance is the effective choice of the micro location for wind potential measurements, installation of the measurement station with the appropriate measuring equipment, its maintenance and analysis of the gained data on wind potential characteristics. In this paper, a wavelet transform has been applied to analyze the wind speed data in the context of insight in the characteristics of the wind and the selection of suitable locations that could be the subject of a wind farm construction. This approach shows that it can be a useful tool in investigation of wind potential.

Presenting a Combinatorial Feature to Estimate Depth of Anesthesia

Determining depth of anesthesia is a challenging problem in the context of biomedical signal processing. Various methods have been suggested to determine a quantitative index as depth of anesthesia, but most of these methods suffer from high sensitivity during the surgery. A novel method based on energy scattering of samples in the wavelet domain is suggested to represent the basic content of electroencephalogram (EEG) signal. In this method, first EEG signal is decomposed into different sub-bands, then samples are squared and energy of samples sequence is constructed through each scale and time, which is normalized and finally entropy of the resulted sequences is suggested as a reliable index. Empirical Results showed that applying the proposed method to the EEG signals can classify the awake, moderate and deep anesthesia states similar to BIS.

A High Bitrate Information Hiding Algorithm for Video in Video

In high bitrate information hiding techniques, 1 bit is embedded within each 4 x 4 Discrete Cosine Transform (DCT) coefficient block by means of vector quantization, then the hidden bit can be effectively extracted in terminal end. In this paper high bitrate information hiding algorithms are summarized, and the scheme of video in video is implemented. Experimental result shows that the host video which is embedded numerous auxiliary information have little visually quality decline. Peak Signal to Noise Ratio (PSNR)Y of host video only degrades 0.22dB in average, while the hidden information has a high percentage of survives and keeps a high robustness in H.264/AVC compression, the average Bit Error Rate(BER) of hiding information is 0.015%.

A Generalized Approach for State Analysis and Parameter Estimation of Bilinear Systems using Haar Connection Coefficients

Three novel and significant contributions are made in this paper Firstly, non-recursive formulation of Haar connection coefficients, pioneered by the present authors is presented, which can be computed very efficiently and avoid stack and memory overflows. Secondly, the generalized approach for state analysis of singular bilinear time-invariant (TI) and time-varying (TV) systems is presented; vis-˜a-vis diversified and complex works reported by different authors. Thirdly, a generalized approach for parameter estimation of bilinear TI and TV systems is also proposed. The unified framework of the proposed method is very significant in that the digital hardware once-designed can be used to perform the complex tasks of state analysis and parameter estimation of different types of bilinear systems single-handedly. The simplicity, effectiveness and generalized nature of the proposed method is established by applying it to different types of bilinear systems for the two tasks.

Effect of Flowrate and Coolant Temperature on the Efficiency of Progressive Freeze Concentration on Simulated Wastewater

Freeze concentration freezes or crystallises the water molecules out as ice crystals and leaves behind a highly concentrated solution. In conventional suspension freeze concentration where ice crystals formed as a suspension in the mother liquor, separation of ice is difficult. The size of the ice crystals is still very limited which will require usage of scraped surface heat exchangers, which is very expensive and accounted for approximately 30% of the capital cost. This research is conducted using a newer method of freeze concentration, which is progressive freeze concentration. Ice crystals were formed as a layer on the designed heat exchanger surface. In this particular research, a helical structured copper crystallisation chamber was designed and fabricated. The effect of two operating conditions on the performance of the newly designed crystallisation chamber was investigated, which are circulation flowrate and coolant temperature. The performance of the design was evaluated by the effective partition constant, K, calculated from the volume and concentration of the solid and liquid phase. The system was also monitored by a data acquisition tool in order to see the temperature profile throughout the process. On completing the experimental work, it was found that higher flowrate resulted in a lower K, which translated into high efficiency. The efficiency is the highest at 1000 ml/min. It was also found that the process gives the highest efficiency at a coolant temperature of -6 °C.

Algorithm Design and Performance Evaluation of Equivalent CMOS Model

This work is a proposed model of CMOS for which the algorithm has been created and then the performance evaluation of this proposition has been done. In this context, another commonly used model called ZSTT (Zero Switching Time Transient) model is chosen to compare all the vital features and the results for the Proposed Equivalent CMOS are promising. In the end, the excerpts of the created algorithm are also included

Modeling and Investigation of Elongation in Free Explosive Forming of Aluminum Alloy Plate

Because of high ductility, aluminum alloys, have been widely used as an important base of metal forming industries. But the main week point of these alloys is their low strength so in forming them with conventional methods like deep drawing, hydro forming, etc have been always faced with problems like fracture during of forming process. Because of this, recently using of explosive forming method for forming of these plates has been recommended. In this paper free explosive forming of A2024 aluminum alloy is numerically simulated and during it, explosion wave propagation process is studied. Consequences of this simulation can be effective in prediction of quality of production. These consequences are compared with an experimental test and show the superiority of this method to similar methods like hydro forming and deep drawing.

Environmental Interference Cancellation of Speech with the Radial Basis Function Networks: An Experimental Comparison

In this paper, we use Radial Basis Function Networks (RBFN) for solving the problem of environmental interference cancellation of speech signal. We show that the Second Order Thin- Plate Spline (SOTPS) kernel cancels the interferences effectively. For make comparison, we test our experiments on two conventional most used RBFN kernels: the Gaussian and First order TPS (FOTPS) basis functions. The speech signals used here were taken from the OGI Multi-Language Telephone Speech Corpus database and were corrupted with six type of environmental noise from NOISEX-92 database. Experimental results show that the SOTPS kernel can considerably outperform the Gaussian and FOTPS functions on speech interference cancellation problem.

An Index based Forward Backward Multiple Pattern Matching Algorithm

Pattern matching is one of the fundamental applications in molecular biology. Searching DNA related data is a common activity for molecular biologists. In this paper we explore the applicability of a new pattern matching technique called Index based Forward Backward Multiple Pattern Matching algorithm(IFBMPM), for DNA Sequences. Our approach avoids unnecessary comparisons in the DNA Sequence due to this; the number of comparisons of the proposed algorithm is very less compared to other existing popular methods. The number of comparisons rapidly decreases and execution time decreases accordingly and shows better performance.

Development of Admire Longitudinal Quasi-Linear Model by using State Transformation Approach

This paper presents a longitudinal quasi-linear model for the ADMIRE model. The ADMIRE model is a nonlinear model of aircraft flying in the condition of high angle of attack. So it can-t be considered to be a linear system approximately. In this paper, for getting the longitudinal quasi-linear model of the ADMIRE, a state transformation based on differentiable functions of the nonscheduling states and control inputs is performed, with the goal of removing any nonlinear terms not dependent on the scheduling parameter. Since it needn-t linear approximation and can obtain the exact transformations of the nonlinear states, the above-mentioned approach is thought to be appropriate to establish the mathematical model of ADMIRE. To verify this conclusion, simulation experiments are done. And the result shows that this quasi-linear model is accurate enough.

Agent Decision using Granular Computing in Traffic System

In recent years multi-agent systems have emerged as one of the interesting architectures facilitating distributed collaboration and distributed problem solving. Each node (agent) of the network might pursue its own agenda, exploit its environment, develop its own problem solving strategy and establish required communication strategies. Within each node of the network, one could encounter a diversity of problem-solving approaches. Quite commonly the agents can realize their processing at the level of information granules that is the most suitable from their local points of view. Information granules can come at various levels of granularity. Each agent could exploit a certain formalism of information granulation engaging a machinery of fuzzy sets, interval analysis, rough sets, just to name a few dominant technologies of granular computing. Having this in mind, arises a fundamental issue of forming effective interaction linkages between the agents so that they fully broadcast their findings and benefit from interacting with others.

Exploiting Global Self Similarity for Head-Shoulder Detection

People detection from images has a variety of applications such as video surveillance and driver assistance system, but is still a challenging task and more difficult in crowded environments such as shopping malls in which occlusion of lower parts of human body often occurs. Lack of the full-body information requires more effective features than common features such as HOG. In this paper, new features are introduced that exploits global self-symmetry (GSS) characteristic in head-shoulder patterns. The features encode the similarity or difference of color histograms and oriented gradient histograms between two vertically symmetric blocks. The domain-specific features are rapid to compute from the integral images in Viola-Jones cascade-of-rejecters framework. The proposed features are evaluated with our own head-shoulder dataset that, in part, consists of a well-known INRIA pedestrian dataset. Experimental results show that the GSS features are effective in reduction of false alarmsmarginally and the gradient GSS features are preferred more often than the color GSS ones in the feature selection.

Compensation Method Eliminating Voltage Distortions in PWM Inverter

The switching lag-time and the voltage drop across the power devices cause serious waveform distortions and fundamental voltage drop in pulse width-modulated inverter output. These phenomenons are conspicuous when both the output frequency and voltage are low. To estimate the output voltage from the PWM reference signal it is essential to take account of these imperfections and to correct them. In this paper, on-line compensation method is presented. It needs three simple blocs to add at the ideal reference voltages. This method does not require any additional hardware circuit and off- line experimental measurement. The paper includes experimental results to demonstrate the validity of the proposed method. It is applied, finally, in case of indirect vector controlled induction machine and implemented using dSpace card.

Bin Bloom Filter Using Heuristic Optimization Techniques for Spam Detection

Bloom filter is a probabilistic and memory efficient data structure designed to answer rapidly whether an element is present in a set. It tells that the element is definitely not in the set but its presence is with certain probability. The trade-off to use Bloom filter is a certain configurable risk of false positives. The odds of a false positive can be made very low if the number of hash function is sufficiently large. For spam detection, weight is attached to each set of elements. The spam weight for a word is a measure used to rate the e-mail. Each word is assigned to a Bloom filter based on its weight. The proposed work introduces an enhanced concept in Bloom filter called Bin Bloom Filter (BBF). The performance of BBF over conventional Bloom filter is evaluated under various optimization techniques. Real time data set and synthetic data sets are used for experimental analysis and the results are demonstrated for bin sizes 4, 5, 6 and 7. Finally analyzing the results, it is found that the BBF which uses heuristic techniques performs better than the traditional Bloom filter in spam detection.

Propagation of Electron-Acoustic Solitary Waves in Weakly Relativistically Degenerate Fermi Plasma

Using one dimensional Quantum hydrodynamic (QHD) model Korteweg de Vries (KdV) solitary excitations of electron-acoustic waves (EAWs) have been examined in twoelectron- populated relativistically degenerate super dense plasma. It is found that relativistic degeneracy parameter influences the conditions of formation and properties of solitary structures.

An Assessment of Technological Competencies on Professional Service Firms Business Performance

This study was initiated with a three prong objective. One, to identify the relationship between Technological Competencies factors (Technical Capability, Firm Innovativeness and E-Business Practices and professional service firms- business performance. To investigate the predictors of professional service firms business performance and finally to evaluate the predictors of business performance according to the type of professional service firms, a survey questionnaire was deployed to collect empirical data. The questionnaire was distributed to the owners of the professional small medium size enterprises services in the Accounting, Legal, Engineering and Architecture sectors. Analysis showed that all three Technology Competency factors have moderate effect on business performance. In addition, the regression models indicate that technical capability is the most highly influential that could determine business performance, followed by e-business practices and firm innovativeness. Subsequently, the main predictor of business performance for all types of firms is Technical capability.

Separation of Manganese and Cadmium from Cobalt Electrolyte Solution by Solvent Extraction

Impurity metals such as manganese and cadmium from high-tenor cobalt electrolyte solution were selectively removed by solvent extraction method using Co-D2EHPA after converting the functional group of D2EHPA with Co2+ ions. The process parameters such as pH, organic concentration, O/A ratio, kinetics etc. were investigated and the experiments were conducted by batch tests in the laboratory bench scale. Results showed that a significant amount of manganese and cadmium can be extracted using Co-D2EHPA for the optimum processing of cobalt electrolyte solution at equilibrium pH about 3.5. The McCabe-Thiele diagram, constructed from the extraction studies showed that 100% impurities can be extracted through four stages for manganese and three stages for cadmium using O/A ratio of 0.65 and 1.0, respectively. From the stripping study, it was found that 100% manganese and cadmium can be stripped from the loaded organic using 0.4 M H2SO4 in a single contact. The loading capacity of Co-D2EHPA by manganese and cadmium were also investigated with different O/A ratio as well as with number of stages of contact of aqueous and organic phases. Valuable information was obtained for the designing of an impurities removal process for the production of pure cobalt with less trouble in the electrowinning circuit.